Immune system cytokines induce vascular shock. Tumor necrosis factor-alpha (TNF-alpha), interleukin 10 (IL-10), and bacterial endotoxin (E) circulate in human heatstroke to suggest that E release from a heat-damaged gut may stimulate cytokines that contribute to hypovolemia. However, immune activation by heat-induced tissue necrosis might stimulate cytokine generation in the absence of E. To evaluate this potential and heat stress effects on the anti-inflammatory cytokines, IL-1 receptor antagonist (IL-1ra) and IL-1 soluble receptor II (IL-1srII), a human whole blood (HWB) model was employed in which the presence or absence of E could be controlled. Using thermoelectric technology to regulate the HWB heat exposures, the temperature modulations of lethal heatstroke were precisely replicated (maximum temperature = 42.4degreesC +/- 0.04degreesC; thermal area = 52.3degreesC +/- 1.5degreesC per min). Cytokine and mRNA measurements employed enzyme-linked immunosorbant-based assay systems. Significant elevations in TNF-alpha, IL-1beta, interleukin 6 (IL-6), and IL-1ra resulted when HWB was exposed to E concentrations (10 ng/ml) reported to circulate in heatstroke. While E-stimulated IL-1ra was significantly decreased by the presence of prior heat stress (PPHS), E-stimulated IL-1beta, TNF-alpha, and IL-6 were not significantly altered by PPHS, but tended to be elevated. IL-1srII expression was unchanged by PPHS and/or E. PPHS in the absence of E did not induce cytokine responses, nor were there elevations in TNF-alpha or IL-1 0 mRNA. Thus, some factor normally absent under in vitro conditions, like endotoxin, was required to provoke HWB cytokine expressions and the heat stress and E conditions that characterize heatstroke affected HWB cytokine metabolism to favor a proinflammatory environment.