Analysis of a meiosis-specific URS1 site: Sequence requirements and involvement of replication protein A

被引:16
作者
GailusDurner, V
Chintamaneni, C
Wilson, R
Brill, SJ
Vershon, AK
机构
[1] RUTGERS STATE UNIV,WAKSMAN INST MICROBIOL,PISCATAWAY,NJ 08855
[2] RUTGERS STATE UNIV,DEPT MOL BIOL & BIOCHEM,PISCATAWAY,NJ 08855
关键词
D O I
10.1128/MCB.17.7.3536
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
URS1 is a transcriptional repressor site found in the promoters of a wide variety of yeast genes that are induced under stress conditions, In the context of meiotic promoters, URS1 sites act as repressor sequences during mitosis and function as activator sites during meiosis. We have investigated the sequence requirements of the URS1 site of the meiosis-specific HOP1 gene (URS1(H)) and have found differences compared with a URS1 site from a nonmeiotic gene, We have also observed that the sequence specificity for meiotic activation at this site differs from that for mitotic repression. Ease pairs flanking the conserved core sequence enhance meiotic induction but are not required for mitotic repression of HOP1. Electrophoretic mobility shift assays of mitotic and meiotic cell extracts show a complex pattern of DNA-protein complexes, suggesting that several different protein factors bind specifically to the site, We have determined that one of the complexes of URS1(H) is formed by replication protein A (RPA). Although RPA binds to the double-stranded URS1(H) site in vitro, it has much higher affinity for single-stranded than for double-stranded URS1(H), and one-hybrid assays suggest that RPA does not bind to this site at detectable levels in vivo, In addition, conditional-lethal mutations in RPA were found to have no effect ran URS1(H)-mediated repression, These results suggest that although RPA binds to URS1(H) in vitro, it does not appear to have a functional role in transcriptional repression through this site in vivo.
引用
收藏
页码:3536 / 3546
页数:11
相关论文
共 47 条
[1]   DNA-binding specificity of Mcm1: Operator mutations that alter DNA-bending and transcriptional activities by a MADS box protein [J].
Acton, TB ;
Zhong, HL ;
Vershon, AK .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (04) :1881-1889
[2]   CHARACTERIZATION OF DNA-BINDING AND STRAND-EXCHANGE STIMULATION PROPERTIES OF Y-RPA, A YEAST SINGLE-STRAND-DNA-BINDING PROTEIN [J].
ALANI, E ;
THRESHER, R ;
GRIFFITH, JD ;
KOLODNER, RD .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 227 (01) :54-71
[3]   UME6, A NEGATIVE REGULATOR OF MEIOSIS IN SACCHAROMYCES-CEREVISIAE, CONTAINS A C-TERMINAL ZN(2)CYS(6) BINUCLEAR CLUSTER THAT BINDS THE URS1 DNA-SEQUENCE IN A ZINC-DEPENDENT MANNER [J].
ANDERSON, SF ;
STEBER, CM ;
ESPOSITO, RE ;
COLEMAN, JE .
PROTEIN SCIENCE, 1995, 4 (09) :1832-1843
[4]  
BHARGAVA J, 1992, GENETICS, V130, P59
[5]  
BOWDISH KS, 1995, MOL CELL BIOL, V15, P2955
[6]   BIPARTITE STRUCTURE OF AN EARLY MEIOTIC UPSTREAM ACTIVATION SEQUENCE FROM SACCHAROMYCES-CEREVISIAE [J].
BOWDISH, KS ;
MITCHELL, AP .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (04) :2172-2181
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   YEAST REPLICATION FACTOR-A FUNCTIONS IN THE UNWINDING OF THE SV40 ORIGIN OF DNA-REPLICATION [J].
BRILL, SJ ;
STILLMAN, B .
NATURE, 1989, 342 (6245) :92-95
[9]   REPLICATION FACTOR-A FROM SACCHAROMYCES-CEREVISIAE IS ENCODED BY 3 ESSENTIAL GENES COORDINATELY EXPRESSED AT S-PHASE [J].
BRILL, SJ ;
STILLMAN, B .
GENES & DEVELOPMENT, 1991, 5 (09) :1589-1600
[10]   NUCLEOTIDE-SEQUENCE AND PROMOTER ANALYSIS OF SPO13, A MEIOSIS-SPECIFIC GENE OF SACCHAROMYCES-CEREVISIAE [J].
BUCKINGHAM, LE ;
WANG, HT ;
ELDER, RT ;
MCCARROLL, RM ;
SLATER, MR ;
ESPOSITO, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (23) :9406-9410