Impact of temperature on the relationship between respiration and nitrogen concentration in roots:: an analysis of scaling relationships, Q10 values and thermal acclimation ratios

被引:61
作者
Atkinson, Lindsey J. [1 ]
Hellicar, Martin A. [1 ]
Fitter, Alastair H. [1 ]
Atkin, Owen K. [1 ]
机构
[1] York Univ, Dept Biol, York YO10 5YW, N Yorkshire, England
关键词
acclimation; nitrogen; Q(10); root respiration; scaling relationships; temperature;
D O I
10.1111/j.1469-8137.2006.01891.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The impact of nitrogen (N) supply on the temperature response of root respiratory O-2 uptake (R) was assessed in several herbaceous species grown in solution culture. Warm-grown (25 : 20 degrees C, day:night) plants differing in root N concentration were shifted to 13 : 8 degrees C for 7 d to cold-acclimate. Log-log plots of root R vs root N concentration both showed that R increased with increasing tissue N concentration, irrespective of the growth temperature. Although the regression slopes of the log-log plots did not differ between the warm-grown and cold-acclimated plants, cold-acclimated plants did exhibit a higher y-axis intercept than their warm-grown counterparts. This suggests that cold acclimation of root R is not entirely dependent on cold-induced increases in tissue N concentration and that scaling relationships (i.e. regression equations fitted to the log-log plots) between root R and N concentration are not fixed. No systematic differences were found in the short-term Quo (proportional change in R per 10 degrees C change in temperature), or degree of cold acclimation (as measured by the proportional difference between warm- and cold-acclimated roots) among roots differing in root N concentration. The temperature response of root R is therefore insensitive to tissue N concentration. The insensitivity of Q(10) values and acclimation to tissue N concentration raises the possibility that root R and its temperature sensitivity can be predicted for a range of N supply scenarios.
引用
收藏
页码:110 / 120
页数:11
相关论文
共 53 条
[1]   NITROGEN SUPPLY EFFECTS ON PRODUCTIVITY AND POTENTIAL LEAF-LITTER DECAY OF CAREX SPECIES FROM PEATLANDS DIFFERING IN NUTRIENT LIMITATION [J].
AERTS, R ;
VANLOGTESTIJN, R ;
VANSTAALDUINEN, M ;
TOET, S .
OECOLOGIA, 1995, 104 (04) :447-453
[2]   Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves [J].
Armstrong, AF ;
Logan, DC ;
Tobin, AK ;
O'Toole, P ;
Atkin, OK .
PLANT CELL AND ENVIRONMENT, 2006, 29 (05) :940-949
[3]   Response of root respiration to changes in temperature and its relevance to global warming [J].
Atkin, OK ;
Edwards, EJ ;
Loveys, BR .
NEW PHYTOLOGIST, 2000, 147 (01) :141-154
[4]   The hot and the cold: unravelling the variable response of plant respiration to temperature [J].
Atkin, OK ;
Bruhn, D ;
Hurry, VM ;
Tjoelker, MG .
FUNCTIONAL PLANT BIOLOGY, 2005, 32 (02) :87-105
[5]   Thermal acclimation and the dynamic response of plant respiration to temperature [J].
Atkin, OK ;
Tjoelker, MG .
TRENDS IN PLANT SCIENCE, 2003, 8 (07) :343-351
[6]   Effect of temperature on rates of alternative and cytochrome pathway respiration and their relationship with the redox poise of the quinone pool [J].
Atkin, OK ;
Zhang, QS ;
Wiskich, JT .
PLANT PHYSIOLOGY, 2002, 128 (01) :212-222
[7]   Root respiration in temperate mountain grasslands differing in land use [J].
Bahn, Michael ;
Knapp, Margit ;
Garajova, Zofia ;
Pfahringer, Nadine ;
Cernusca, Alexander .
GLOBAL CHANGE BIOLOGY, 2006, 12 (06) :995-1006
[8]   Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest:: extending observations beyond the first year [J].
BhupinderpalSingh ;
Nordgren, A ;
Löfvenius, MO ;
Högberg, MN ;
Mellander, PE ;
Högberg, P .
PLANT CELL AND ENVIRONMENT, 2003, 26 (08) :1287-1296
[9]   Root respiration in citrus acclimates to temperature and slows during drought [J].
Bryla, DR ;
Bouma, TJ ;
Eissenstat, DM .
PLANT CELL AND ENVIRONMENT, 1997, 20 (11) :1411-1420
[10]   Influence of temperature and soil drying on respiration of individual roots in citrus: integrating greenhouse observations into a predictive model for the field [J].
Bryla, DR ;
Bouma, TJ ;
Hartmond, U ;
Eissenstat, DM .
PLANT CELL AND ENVIRONMENT, 2001, 24 (08) :781-790