Noradrenaline enhances monocarboxylate transporter 2 expression in cultured mouse cortical neurons via a translational regulation

被引:49
作者
Pierre, K [1 ]
Debernardi, R [1 ]
Magistretti, PJ [1 ]
Pellerin, L [1 ]
机构
[1] Inst Physiol, CH-1005 Lausanne, Switzerland
关键词
energy metabolism; lactate; monocarboxylate transporter 1; monocarboxylate transporter 2; protein expression; translation regulation;
D O I
10.1046/j.1471-4159.2003.01964.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Regulation of the expression of MCT1 and MCT2, two isoforms of the monocarboxylate transporter (MCT) family, was investigated in primary cultures of mouse cortical neurons. Under basal conditions, both IVICT immunoreactivities (IR) were found in the cell soma and dendrites, although IR for MCT1 appeared less bright than for MCT2. Treatment of cultured cortical neurons with 100 mum noradrenaline (NA) led, after a few hours, to a striking enhancement in fluorescence intensity associated with MCT2 IR in the cell soma as well as in dendrites. In contrast, MCT1 IR was not altered by NA treatment. Western blot experiments performed on cultured neurons treated with NA confirmed that MCT2 protein expression was increased. Forskolin and dBcAMP also enhanced MCT2 expression, suggesting the implication of a cAMP-mediated pathway in the effect of NA. Surprisingly, neither NA, dBcAMP nor forskolin affected MCT2 mRNA expression. Application of cycloheximide, a protein synthesis inhibitor, prevented the enhancement of MCT2 IR, while the mRNA synthesis inhibitor actinomycin D also blocked the effect of NA on MCT2 IR levels. These results suggest that regulation of MCT2 expression in neurons by NA occurs at the translational level despite the requirement for an as yet unknown transcriptional step.
引用
收藏
页码:1468 / 1476
页数:9
相关论文
共 48 条
[1]   MULTIPLE ADRENERGIC-RECEPTOR SUBTYPES CONTROLLING CYCLIC-AMP FORMATION - COMPARISON OF BRAIN-SLICES AND PRIMARY NEURONAL AND GLIAL CULTURES [J].
ATKINSON, BN ;
MINNEMAN, KP .
JOURNAL OF NEUROCHEMISTRY, 1991, 56 (02) :587-595
[2]   Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle [J].
Baker, SK ;
McCullagh, KJA ;
Bonen, A .
JOURNAL OF APPLIED PHYSIOLOGY, 1998, 84 (03) :987-994
[3]   Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system [J].
Bergersen, L ;
Rafiki, A ;
Ottersen, OP .
NEUROCHEMICAL RESEARCH, 2002, 27 (1-2) :89-96
[4]   A novel postsynaptic density protein:: the monocarboxylate transporter MCT2 is co-localized with δ-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses [J].
Bergersen, L ;
Wærhaug, O ;
Helm, J ;
Thomas, M ;
Laake, P ;
Davies, AJ ;
Wilson, MC ;
Halestrap, AP ;
Ottersen, OP .
EXPERIMENTAL BRAIN RESEARCH, 2001, 136 (04) :523-534
[5]   The expression of lactate transporters (MCT1 and MCT4) in heart and muscle [J].
Bonen, A .
EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2001, 86 (01) :6-11
[6]   Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate [J].
Bonen, A ;
McCullagh, KJA ;
Putman, CT ;
Hultman, E ;
Jones, NL ;
Heigenhauser, GJF .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1998, 274 (01) :E102-E107
[7]   Isoform-specific regulation of the lactate transporters MCT1 and MCT4 by contractile activity [J].
Bonen, A ;
Tonouchi, M ;
Miskovic, D ;
Heddle, C ;
Heikkila, JJ ;
Halestrap, AP .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2000, 279 (05) :E1131-E1138
[8]   Feeding active neurons: (re)emergence of a nursing role for astrocytes [J].
Bouzier-Sore, AK ;
Merle, M ;
Magistretti, PJ ;
Pellerin, L .
JOURNAL OF PHYSIOLOGY-PARIS, 2002, 96 (3-4) :273-282
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   OPTIMIZED SURVIVAL OF HIPPOCAMPAL-NEURONS IN B27-SUPPLEMENTED NEUROBASAL(TM), A NEW SERUM-FREE MEDIUM COMBINATION [J].
BREWER, GJ ;
TORRICELLI, JR ;
EVEGE, EK ;
PRICE, PJ .
JOURNAL OF NEUROSCIENCE RESEARCH, 1993, 35 (05) :567-576