Electrostatic energy in the effective fragment potential method: Theory and application to benzene dimer

被引:102
作者
Slipchenko, Lyudmila V.
Gordon, Mark S. [1 ]
机构
[1] Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA
[2] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA
关键词
electrostatic screening; EFP; dispersion; benzene-benzene;
D O I
10.1002/jcc.20520
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Evaluation of the electrostatic energy within the effective fragment potential (EFP) method is presented. The performance of two variants of the distributed multipole analysis (DMA) together with two different models for estimating the charge penetration energies was studied using six homonuclear dimers. The importance of damping the higher order multipole terms, i.e. charge dipole, was also investigated. Damping corrections recover more than 70% of the charge penetration energy in all dimers, whereas higher order damping introduces only minor improvement. Electrostatic energies calculated by the numerical DMA are less accurate than those calculated by the analytic DMA. Analysis of bonding in the benzene dimer shows that EFP with inclusion of the electrostatic damping term performs very well compared to the high-level coupled cluster singles, doubles, and perturbative triples method. The largest error of 0.4 kcal/mol occurs for the sandwich dimer configuration. This error is about half the size of the corresponding error in second order perturbation theory. Thus, EFP in the current implementation is an accurate and computationally inexpensive method for calculating interaction energies in weakly bonded molecular complexes. (C) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:276 / 291
页数:16
相关论文
共 54 条
[1]   THE ROTATIONAL SPECTRUM, STRUCTURE AND DYNAMICS OF A BENZENE DIMER [J].
ARUNAN, E ;
GUTOWSKY, HS .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (05) :4294-4296
[2]  
BADER AM, 1990, ATOMS MOL
[3]   A MULTICENTER NUMERICAL-INTEGRATION SCHEME FOR POLYATOMIC-MOLECULES [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (04) :2547-2553
[4]   ATOMIC CHARGES DERIVED FROM SEMIEMPIRICAL METHODS [J].
BESLER, BH ;
MERZ, KM ;
KOLLMAN, PA .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (04) :431-439
[5]  
BORNSEN KO, 1986, J CHEM PHYS, V85, P1726, DOI 10.1063/1.451173
[6]   EFFICIENT DIFFUSE FUNCTION-AUGMENTED BASIS SETS FOR ANION CALCULATIONS. III. THE 3-21+G BASIS SET FOR FIRST-ROW ELEMENTS, LI-F [J].
CLARK, T ;
CHANDRASEKHAR, J ;
SPITZNAGEL, GW ;
SCHLEYER, PV .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (03) :294-301
[7]   ANALYTICAL MOLECULAR-SURFACE CALCULATION [J].
CONNOLLY, ML .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1983, 16 (OCT) :548-558
[8]  
Coulson CA, 1942, P CAMB PHILOS SOC, V38, P210
[9]   An effective fragment method for modeling solvent effects in quantum mechanical calculations [J].
Day, PN ;
Jensen, JH ;
Gordon, MS ;
Webb, SP ;
Stevens, WJ ;
Krauss, M ;
Garmer, D ;
Basch, H ;
Cohen, D .
JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (05) :1968-1986