Mad1 function is regulated through elements within the carboxy terminus

被引:7
作者
Barrera-Hernandez, G
Cultraro, CM
Pianetti, S
Segal, S
机构
[1] NCI, NCI Navy Med Branch, Dept Genet, NNMC,NIH, Bethesda, MD 20889 USA
[2] Uniformed Serv Univ Hlth Sci, Bethesda, MD 20889 USA
关键词
D O I
10.1128/MCB.20.12.4253-4264.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Myc and Mad are basic helix-loop-helix leucine zipper (bHLH-LZ) proteins that heterodimerize with Max to bind DNA and thereby influence the transcription of Mac-responsive genes. Myc-Max dimers transactivate whereas Mad-Max-mSin3 complexes repress Myc-mediated transcriptional activation. We have previously shown that the N-terminal mSin3 binding domain and the centrally located bHLH-LZ are required for Mad1 to function during a molecular switch from proliferation to differentiation. Here we demonstrate that the carboxy terminus (CT) of Mad1 contains previously unidentified motifs necessary for the regulation of Mad1 function. We show that removal of the last 18 amino acids of Mad1 (region V) abolishes the growth-inhibitory function of the protein and the ability to reverse a Myc-imposed differentiation block Moreover, deletion of region V results in a protein that binds DNA weakly and no longer represses Myc-dependent transcriptional activation. In contrast, deletion of the preceding 24 amino acids (region IV) together with region V restores DNA binding and transcriptional repression, suggesting a functional interplay between these two regions. Furthermore, phosphorylation within region IV appears to mediate this interplay. These findings indicate that novel regulatory elements are present in the Mad1 CT.
引用
收藏
页码:4253 / 4264
页数:12
相关论文
共 58 条
[1]   Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression [J].
Alland, L ;
Muhle, R ;
Hou, H ;
Potes, J ;
Chin, L ;
SchreiberAgus, N ;
DePinho, RA .
NATURE, 1997, 387 (6628) :49-55
[2]   ONCOGENIC ACTIVITY OF THE C-MYC PROTEIN REQUIRES DIMERIZATION WITH MAX [J].
AMATI, B ;
BROOKS, MW ;
LEVY, N ;
LITTLEWOOD, TD ;
EVAN, GI ;
LAND, H .
CELL, 1993, 72 (02) :233-245
[3]   SEQUENCE-SPECIFIC TRANSCRIPTIONAL ACTIVATION BY MYC AND REPRESSION BY MAX [J].
AMIN, C ;
WAGNER, AJ ;
HAY, N .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (01) :383-390
[4]   MAD - A HETERODIMERIC PARTNER FOR MAX THAT ANTAGONIZES MYC TRANSCRIPTIONAL ACTIVITY [J].
AYER, DE ;
KRETZNER, L ;
EISENMAN, RN .
CELL, 1993, 72 (02) :211-222
[5]   A SWITCH FROM MYC-MAX TO MAD-MAX HETEROCOMPLEXES ACCOMPANIES MONOCYTE/MACROPHAGE DIFFERENTIATION [J].
AYER, DE ;
EISENMAN, RN .
GENES & DEVELOPMENT, 1993, 7 (11) :2110-2119
[6]  
BARNER M, 1992, CELL GROWTH DIFFER, V3, P183
[7]   CASEIN KINASE-II INHIBITS THE DNA-BINDING ACTIVITY OF MAX HOMODIMERS BUT NOT MYC MAX HETERODIMERS [J].
BERBERICH, SJ ;
COLE, MD .
GENES & DEVELOPMENT, 1992, 6 (02) :166-176
[8]   MAX - A HELIX-LOOP-HELIX ZIPPER PROTEIN THAT FORMS A SEQUENCE-SPECIFIC DNA-BINDING COMPLEX WITH MYC [J].
BLACKWOOD, EM ;
EISENMAN, RN .
SCIENCE, 1991, 251 (4998) :1211-1217
[9]   Expression and regulation of protein kinase CK2 during the cell cycle [J].
Bosc, DG ;
Lüscher, B ;
Litchfield, DW .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1999, 191 (1-2) :213-222
[10]  
BOUSSET K, 1993, ONCOGENE, V8, P3211