Phototransformation of alkanethiol-derivatized noble metal nanoparticles

被引:23
作者
Ah, CS
Han, HS
Kim, K
Jang, DJ [1 ]
机构
[1] Seoul Natl Univ, Sch Chem, Seoul 151742, South Korea
[2] Seoul Natl Univ, Ctr Mol Catalysis, Seoul 151742, South Korea
关键词
D O I
10.1351/pac200072010091
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photon-initiated shape transformation of n-alkanethiol-derivatized noble metal nanoparticles has been studied with variations of metal, alkanethiol, and solvent. Silver nanoparticles undergo fragmentation upon irradiation while gold ones barely do. Silver/gold composite particles follow the case of silver with a reduced efficiency. The efficiency decreases as alkanethiol length or solvent dipole moment increases. Following the conduction of thermalized photon energy, alkanethiol can dissociate in a period of heat dissipation, and some of dethiolated particles fragment within the recombination time. Prior to the thermal conduction, shape transformation via melt and vaporization also occurs for both metals but this effect is less apparent for silver because of more notable fragmentation followed. The difference in the transformation of two metals is ascribed to the differences in work function, oxidation potential, atomization enthalpy, and particle size. Smaller fragmentation efficiency with more polar solvent or longer alkanethiol is attributed mainly to relatively smaller dissociation rate compared with heat dissipation rate.
引用
收藏
页码:91 / 99
页数:9
相关论文
共 48 条
[1]   Shape-controlled synthesis of colloidal platinum nanoparticles [J].
Ahmadi, TS ;
Wang, ZL ;
Green, TC ;
Henglein, A ;
ElSayed, MA .
SCIENCE, 1996, 272 (5270) :1924-1926
[2]   Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver [J].
Aizenberg, J ;
Black, AJ ;
Whitesides, GH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (18) :4500-4509
[3]   Optical absorption spectra of nanocrystal gold molecules [J].
Alvarez, MM ;
Khoury, JT ;
Schaaff, TG ;
Shafigullin, MN ;
Vezmar, I ;
Whetten, RL .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (19) :3706-3712
[4]   Redox-modulated recognition of flavin by functionalized gold nanoparticles [J].
Boal, AK ;
Rotello, VM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (20) :4914-4915
[5]   Thiol-derivatized AgI nanoparticles: Synthesis, characterization, and optical properties [J].
Chen, SH ;
Ida, T ;
Kimura, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (32) :6169-6176
[6]   New organic materials suitable for use in chemical sensor arrays [J].
Crooks, RM ;
Ricco, AJ .
ACCOUNTS OF CHEMICAL RESEARCH, 1998, 31 (05) :219-227
[7]   TEMPLATE-SYNTHESIZED NANOSCOPIC GOLD PARTICLES - OPTICAL-SPECTRA AND THE EFFECTS OF PARTICLE-SIZE AND SHAPE [J].
FOSS, CA ;
HORNYAK, GL ;
STOCKERT, JA ;
MARTIN, CR .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (11) :2963-2971
[8]   Visible laser induced fusion and fragmentation of thionicotinamide-capped gold nanoparticles [J].
Fujiwara, H ;
Yanagida, S ;
Kamat, PV .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (14) :2589-2591
[9]   Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis [J].
Han, SW ;
Kim, Y ;
Kim, K .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1998, 208 (01) :272-278
[10]   Spectrophotometric observations of the adsorption of organosulfur compounds on colloidal silver nanoparticles [J].
Henglein, A ;
Meisel, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (43) :8364-8366