One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites

被引:239
作者
Cao, Xiaodong [1 ]
Habibi, Youssef [1 ]
Lucia, Lucian A. [1 ]
机构
[1] N Carolina State Univ, Dept Forest Biomat, Raleigh, NC 27695 USA
关键词
MECHANICAL-PROPERTIES; STARCH NANOCRYSTALS; PHYSICAL-PROPERTIES; PLASTICIZED STARCH; NATIVE CELLULOSE; WHISKERS; BEHAVIOR; DISPERSIONS; MORPHOLOGY; CLAY;
D O I
10.1039/b910517d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of new waterborne polyurethane (WPU)/cellulose nanocrystal (CN) composites have been successfully synthesized via in situ polymerization. The conditions were optimized to induce the grafting of part of the pre-synthesized WPU chains on the surface of cellulose nanocrystals (CNs) and the corresponding nanocomposites were processed by casting and evaporation. The morphology, structural, thermal, and mechanical properties of the resulting nanocomposite films were evaluated by scanning electron microscopy, wide-angle X-ray diffraction, differential scanning calorimetry, dynamic mechanical analysis, and tensile tests. The success of the grafting was substantiated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and differential scanning calorimetry. Thus, it was demonstrated that the grafted WPU chains formed crystalline domains on the surface of CNs which expedited the crystallization of the polycaprolactone (PCL) soft segment domains in the WPU/CN nanocomposites. This co-crystallization phenomenon induced the formation of a co-continuous phase between the matrix and filler which significantly enhanced the interfacial adhesion and consequently contributed to an improvement in the thermal stability and mechanical strength of the nanocomposites. Although the ductility of the final nanocomposites was slightly reduced, in the CN content range from 0 to 10 wt-%, the Young's modulus and strength were significantly improved as shown by the change from 1.7 to 107.4 MPa and 4.4 to 9.7 MPa, respectively.
引用
收藏
页码:7137 / 7145
页数:9
相关论文
共 48 条
[1]  
[Anonymous], 1984, WOOD CHEM ULTRASTRUC, DOI DOI 10.1515/9783110839654
[2]   Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose [J].
Araki, J ;
Wada, M ;
Kuga, S ;
Okano, T .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1998, 142 (01) :75-82
[3]   Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions [J].
Beck-Candanedo, S ;
Roman, M ;
Gray, DG .
BIOMACROMOLECULES, 2005, 6 (02) :1048-1054
[4]   New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane [J].
Cao, Xiaodong ;
Dong, Hua ;
Li, Chang Ming .
BIOMACROMOLECULES, 2007, 8 (03) :899-904
[5]   Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis [J].
Capadona, Jeffrey R. ;
Shanmuganathan, Kadhiravan ;
Tyler, Dustin J. ;
Rowan, Stuart J. ;
Weder, Christoph .
SCIENCE, 2008, 319 (5868) :1370-1374
[6]   A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates [J].
Capadona, Jeffrey R. ;
Van Den Berg, Otto ;
Capadona, Lynn A. ;
Schroeter, Michael ;
Rowan, Stuart J. ;
Tyler, Dustin J. ;
Weder, Christoph .
NATURE NANOTECHNOLOGY, 2007, 2 (12) :765-769
[7]  
CASTONGUAY M, 2001, BIOMEDICAL APPL POLY, P284
[8]   CONFORMATIONS OF POLYURETHANE CATIONOMERS IN ORGANIC-SOLVENTS AND IN ORGANIC-SOLVENT WATER MIXTURES [J].
CHAN, WC ;
CHEN, SA .
POLYMER, 1993, 34 (06) :1265-1271
[9]   Simultaneous reinforcing and toughening: New nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals [J].
Chen, Guangjun ;
Wei, Ming ;
Chen, Jinghua ;
Huang, Jin ;
Dufresne, Alain ;
Chang, Peter R. .
POLYMER, 2008, 49 (07) :1860-1870
[10]   THERMODYNAMICS OF FUSION OF POLY-BETA-PROPIOLACTONE AND POLY-EPSILON-CAPROLACTONE - COMPARATIVE ANALYSIS OF MELTING OF ALIPHATIC POLYLACTONE AND POLYESTER CHAINS [J].
CRESCENZI, V ;
MANZINI, G ;
CALZOLARI, G ;
BORRI, C .
EUROPEAN POLYMER JOURNAL, 1972, 8 (03) :449-+