Two synthetic routes including Mg doping and MgO-surface modification were applied to the preparation of LiCoO2 showing enhanced reversible cycling behaviour as cathode material in lithium ion batteries. Mg-doped LiCoO2 was obtained by the citrate precursor method in the temperature range 750-900 degreesC. The surface of LiCoO2 was modified by coating with Mg(CH3COO)(2) and subsequent heating at 600 degreesC. XRD, chemical oxidative analysis and electron paramagnetic resonance (EPR) of Ni3+ spin probes were used to characterize the Mg distribution in LiCoO2. Substitution of Co by Mg in the CoO2-layers was found to have a positive effect on the cycling stability, while Mg dopants in LiO2-layers did not influence the capacity fade. The accumulation of MgO on the surface of LiCoO2 improves the cycling stability without loss of initial capacity. (C) 2001 Elsevier Science BY. All rights reserved.