Missing Data Methods in Mendelian Randomization Studies With Multiple Instruments

被引:13
作者
Burgess, Stephen [1 ]
Seaman, Shaun [1 ]
Lawlor, Debbie A. [2 ]
Casas, Juan P. [3 ]
Thompson, Simon G. [4 ]
机构
[1] Univ Cambridge, Biostat Unit, MRC, Cambridge CB2 0SR, England
[2] Univ Bristol, MRC, Ctr Causal Anal Translat Epidemiol, Sch Social & Community Med, Bristol, Avon, England
[3] London Sch Hyg & Trop Med, Dept Epidemiol & Populat Hlth, London WC1, England
[4] Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge CB2 0SR, England
基金
英国医学研究理事会;
关键词
Bayesian methods; causal inference; imputation; instrumental variables; Mendelian randomization analysis; missing data; C-REACTIVE PROTEIN; WEAK INSTRUMENTS; CAUSAL INFERENCE; ASSOCIATION; BIAS; VARIABLES; GENOTYPE;
D O I
10.1093/aje/kwr235
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Mendelian randomization studies typically have low power. Where there are several valid candidate genetic instruments, precision can be gained by using all the instruments available. However, sporadically missing genetic data can offset this gain. The authors describe 4 Bayesian methods for imputing the missing data based on a missing-at-random assumption: multiple imputations, single nucleotide polymorphism (SNP) imputation, latent variables, and haplotype imputation. These methods are demonstrated in a simulation study and then applied to estimate the causal relation between C-reactive protein and each of fibrinogen and coronary heart disease, based on 3 SNPs in British Women's Heart and Health Study participants assessed at baseline between May 1999 and June 2000. A complete-case analysis based on all 3 SNPs was found to be more precise than analyses using any 1 SNP alone. Precision is further improved by using any of the 4 proposed missing data methods; the improvement is equivalent to about a 25% increase in sample size. All methods gave similar results, which were apparently not overly sensitive to violation of the missing-at-random assumption. Programming code for the analyses presented is available online.
引用
收藏
页码:1069 / 1076
页数:8
相关论文
共 32 条
  • [1] Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering
    Browning, Sharon R.
    Browning, Brian L.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (05) : 1084 - 1097
  • [2] Multilocus association mapping using variable-length Markov chains
    Browning, Sharon R.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2006, 78 (06) : 903 - 913
  • [3] Burgess S, 2011, 20111 MRC BIOST UN
  • [4] Avoiding bias from weak instruments in Mendelian randomization studies
    Burgess, Stephen
    Thompson, Simon G.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2011, 40 (03) : 755 - 764
  • [5] Bayesian methods for meta-analysis of causal relationships estimated using genetic instrumental variables
    Burgess, Stephen
    Thompson, Simon G.
    [J]. STATISTICS IN MEDICINE, 2010, 29 (12) : 1298 - 1311
  • [6] Collaborative pooled analysis of data on C-reactive protein gene variants and coronary disease: judging causality by Mendelian randomisation
    Danesh, J.
    CRP CHD Genet Collaborat
    Hingorani, A.
    Wensley, F.
    Casas, J. P.
    Smeeth, L.
    Samani, N.J.
    Hall, A.
    Whincup, P.
    Morris, R.
    Lawlor, D.A.
    Smith, G. Davey
    Timpson, N.
    Ebrahim, S.
    Brown, M.
    Sandhu, M.
    Reiner, A.
    Psaty, B.
    Lange, L.
    Cushman, M.
    Tracy, R.
    Nordestgaard, B.G.
    Tybjaerg-Hansen, A.
    Zacho, J.
    Hung, J.
    Thompson, P.
    Beilby, J.
    Palmer, L.J.
    Fowkes, G.
    Lowe, G.
    Tzoulaki, I.
    Kumari, M.
    Overvad, K.
    Khaw, K.T.
    Benjamin, E.J.
    Larson, M.G.
    Yamamoto, J.F.
    Chiodini, B.
    Franzosi, M.
    Norman, P.E.
    Hankey, G.J.
    Jamrozik, K.
    Palmer, L.
    Rimm, E.
    Pai, J.
    Heckbert, S.
    Bis, J.
    Yusuf, S.
    Anand, S.
    Engert, J.
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2008, 23 (08) : 531 - 540
  • [7] Mendelian randomization as an instrumental variable approach to causal inference
    Didelez, Vanessa
    Sheehan, Nuala
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (04) : 309 - 330
  • [8] Missing call bias in high-throughput genotyping
    Fu, Wenqing
    Wang, Yi
    Wang, Ying
    Li, Rui
    Lin, Rong
    Jin, Li
    [J]. BMC GENOMICS, 2009, 10
  • [9] Gelman A., 1992, Statist. Sci., V7, P457
  • [10] An introduction to instrumental variables for epidemiologists
    Greenland, S
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2000, 29 (04) : 722 - 729