Electrochemical Performance of α-MnO2 Nanorods/Activated Carbon Hybrid Supercapacitor

被引:48
作者
Aravindan, V. [1 ,2 ]
Reddy, M. V. [1 ]
Madhavi, S. [2 ,3 ]
Rao, G. V. Subba [1 ]
Chowdari, B. V. R. [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Nanyang Technol Univ, Energy Res Inst ERI N, Singapore 637553, Singapore
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Hybrid Electrochemical Capacitor; Li-Ion Battery; alpha-MnO2; Nanorods; Activated Carbon; Hydrothermal Route; V LITHIUM BATTERIES; MANGANESE-DIOXIDE; AQUEOUS-SOLUTION; CAPACITORS; MNO2; ELECTRODE; BEHAVIOR; CATHODE; ANODE;
D O I
10.1166/nnl.2012.1377
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hollondite type alpha-MnO2 nanorods are prepared by hydrothermal route at 160 degrees C for 8 h. The structural and morphological properties are examined by X-ray diffraction, BET surface area, scanning electron microscopy and high resolution transmission electron microscopy. Half-cells (Li/alpha-MnO2) are fabricated to study the Li-cycling behavior in both galvanostaic and potentiostatic modes. The alpha-MnO2 delivers a stable reversible capacity of similar to 80 mA h g(-1) at constant current 50 mA g(-1) up to 50 cycles when cycled between 1.5-3.8 V versus Li. The hybrid electrochemical capacitor is fabricated using alpha-MnO2 nanorods (as anode) and activated carbon (as cathode) in non-aqueous medium and cycled between 0-3 V. The hybrid electrochemical capacitor exhibited a stable specific discharge capacitance of 28 F g(-1) at high current (60 mA g(-1)). Further, hybrid electrochemical capacitor displayed a maximum energy and power densities of 9 W h kg(-1) and 87 W kg(-1), respectively.
引用
收藏
页码:724 / 728
页数:5
相关论文
共 26 条
  • [1] An asymmetric hybrid nonaqueous energy storage cell
    Amatucci, GG
    Badway, F
    Du Pasquier, A
    Zheng, T
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) : A930 - A939
  • [2] Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode
    Aravindan, V.
    Reddy, M. V.
    Madhavi, S.
    Mhaisalkar, S. G.
    Rao, G. V. Subba
    Chowdari, B. V. R.
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (20) : 8850 - 8854
  • [3] A review of porous manganese oxide materials
    Brock, SL
    Duan, NG
    Tian, ZR
    Giraldo, O
    Zhou, H
    Suib, SL
    [J]. CHEMISTRY OF MATERIALS, 1998, 10 (10) : 2619 - 2628
  • [4] Hydrothermal synthesis and catalytic properties of α- and β-MnO2 nanorods
    Cao, Guangsheng
    Su, Ling
    Zhang, Xiaojuan
    Li, Hui
    [J]. MATERIALS RESEARCH BULLETIN, 2010, 45 (04) : 425 - 428
  • [5] Investigations on capacitive properties of the AC/V2O5 hybrid supercapacitor in various aqueous electrolytes
    Chen, Lian-Mei
    Lai, Qiong-Yu
    Hao, Yan-Jing
    Zhao, Yan
    Ji, Xiao-Yang
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 467 (1-2) : 465 - 471
  • [6] A hybrid nonaqueous electrochemical supercapacitor using nano-sized iron oxyhydroxide and activated carbon
    Cheng, L
    Li, HQ
    Xia, YY
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (06) : 405 - 410
  • [7] Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties
    Devaraj, S.
    Munichandraiah, N.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (11) : 4406 - 4417
  • [8] Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor
    Hong, MS
    Lee, SH
    Kim, SW
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (10) : A227 - A230
  • [9] Carbon materials for electrochemical capacitors
    Inagaki, Michio
    Konno, Hidetaka
    Tanaike, Osamu
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (24) : 7880 - 7903
  • [10] Ammonia- and lithia-doped manganese dioxide for 3 V lithium batteries
    Johnson, CS
    Thackeray, MM
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 437 - 442