Topological persistence and simplification

被引:980
作者
Edelsbrunner, H [1 ]
Letscher, D
Zomorodian, A
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[2] Raindrop Geomag, Res Triangle Pk, NC USA
[3] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[4] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
关键词
D O I
10.1007/s00454-002-2885-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We formalize a notion of topological simplification within the framework of a filtration, which is the history of a growing complex. We classify a topological change that happens during growth as either a feature or noise depending on its lifetime or persistence within the filtration. We give fast algorithms for computing persistence and experimental evidence for their speed and utility.
引用
收藏
页码:511 / 533
页数:23
相关论文
共 11 条
[1]  
[Anonymous], 1996, LEVEL SET METHODS
[2]  
Cormen T. H., 1994, INTRO ALGORITHMS
[3]   AN INCREMENTAL ALGORITHM FOR BETTI NUMBERS OF SIMPLICIAL COMPLEXES ON THE 3-SPHERE [J].
DELFINADO, CJA ;
EDELSBRUNNER, H .
COMPUTER AIDED GEOMETRIC DESIGN, 1995, 12 (07) :771-784
[4]   3-DIMENSIONAL ALPHA-SHAPES [J].
EDELSBRUNNER, H ;
MUCKE, EP .
ACM TRANSACTIONS ON GRAPHICS, 1994, 13 (01) :43-72
[5]   SIMULATION OF SIMPLICITY - A TECHNIQUE TO COPE WITH DEGENERATE CASES IN GEOMETRIC ALGORITHMS [J].
EDELSBRUNNER, H ;
MUCKE, EP .
ACM TRANSACTIONS ON GRAPHICS, 1990, 9 (01) :66-104
[6]   Topology simplification for polygonal virtual environments [J].
El-Sana, J ;
Varshney, A .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 1998, 4 (02) :133-144
[7]  
MARTZ E, PROTEIN EXPLORER 1 8
[8]  
MCCLEARY JOHN., 1985, USERS GUIDE SPECTRAL
[9]  
Milnor J., 1963, MORSE THEORY
[10]  
Munkres J R., 1984, Elements of algebraic topology