Chronic pain after clip-compression injury of the rat spinal cord

被引:113
作者
Bruce, JC [1 ]
Oatway, MA [1 ]
Weaver, LC [1 ]
机构
[1] John P Robarts Res Inst, Biotherapeut Res Grp, Spinal Cord Injury Lab, London, ON N6A 5K8, Canada
关键词
spinal cord injury; allodynia; hyperalgesia; plasticity; sprouting; serotonin; afferent fibers;
D O I
10.1006/exnr.2002.8026
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Chronic tactile allodynia and hyperalgesia are frequent complications of spinal cord injury (SCI) with poorly understood mechanisms. Possible causes are plastic changes in the central arbors of nociceptive and nonnociceptive primary sensory neurons and changes in descending modulatory serotonergic pathways. A clinically relevant clip-compression model of SCI in the rat was used to investigate putative mechanisms of chronic pain. Behavioral testing (n = 18 rats) demonstrated that moderate (35 g) or severe (50 g) SCI at the 12th thoracic spinal segment (T-12) reliably produces chronic tactile allodynia and hyperalgesia that can be evoked from the hindpaws and back. Quantitative morphometry (n = 37) revealed no changes after SCI in the density or distribution of Abeta-, Adelta-, and C-fiber central arbors of primary sensory neurons within the thoracolumbar segments T-6 to L-4. This observation rules out a mandatory relationship between pain-related behaviors and changes in the distribution or density of central afferent arbors. The area of serotonin immunoreactivity in the dorsal horn (n = 12) decreased caudal to the injury site (L1-4) and increased threefold rostral to it (T9-11). The decreased serotonin and presence of tactile allodynia and hyperalgesia caudal to the injury are consistent with disruption of descending antinociceptive serotonergic tracts that modulate pain transmission. The functional significance of the increased serotonin in rostral segments may relate to the development of tactile allodynia as serotonin also has known pronociceptive actions. Changes in the descending serotonergic pathway require further investigation, as a disruption of the balance of serotonergic input rostral and caudal to the injury site may contribute to the etiology of chronic pain after SCI. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:33 / 48
页数:16
相关论文
共 70 条
[1]   The effect of the sodium channel blocker QX-314 on recovery after acute spinal cord injury [J].
Agrawal, SK ;
Fehlings, MG .
JOURNAL OF NEUROTRAUMA, 1997, 14 (02) :81-88
[2]  
Agrawal SK, 1996, J NEUROSCI, V16, P545
[3]   The role of 5HT(3) in nociceptive processing in the rat spinal cord: Results from behavioural and electrophysiological studies [J].
Ali, Z ;
Wu, G ;
Kozlov, A ;
Barasi, S .
NEUROSCIENCE LETTERS, 1996, 208 (03) :203-207
[4]  
[Anonymous], 1987, PAIN
[5]  
[Anonymous], 1983, Statistical methods
[6]   Effect of intrathecal administration of serotonin in chronic pain models in rats [J].
Bardin, L ;
Schmidt, J ;
Alloui, A ;
Eschalier, A .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2000, 409 (01) :37-43
[7]   A SENSITIVE AND RELIABLE LOCOMOTOR RATING-SCALE FOR OPEN-FIELD TESTING IN RATS [J].
BASSO, DM ;
BEATTIE, MS ;
BRESNAHAN, JC .
JOURNAL OF NEUROTRAUMA, 1995, 12 (01) :1-21
[8]   NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord [J].
Bradbury, EJ ;
Khemani, S ;
King, VR ;
Priestley, JV ;
McMahon, SB .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1999, 11 (11) :3873-3883
[9]   Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat [J].
Bregman, BS ;
McAtee, M ;
Dal, HN ;
Kuhn, PL .
EXPERIMENTAL NEUROLOGY, 1997, 148 (02) :475-494
[10]   DEVELOPMENT OF SEROTONIN IMMUNOREACTIVITY IN THE RAT SPINAL-CORD AND ITS PLASTICITY AFTER NEONATAL SPINAL-CORD LESIONS [J].
BREGMAN, BS .
DEVELOPMENTAL BRAIN RESEARCH, 1987, 34 (02) :245-263