共 63 条
Influence of sequence identity and unique breakpoints on the frequency of intersubtype HIV-1 recombination
被引:29
作者:
Baird, Heather A.
Gao, Yong
Galetto, Roman
Lalonde, Matthew
Anthony, Reshma M.
Giacomoni, Veronique
Abreha, Measho
Destefano, Jeffrey J.
Negroni, Matteo
Arts, Eric J.
[1
]
机构:
[1] Case Western Reserve Univ, Dept Med, Div Infect Dis, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Pharmacol, Cleveland, OH 44106 USA
[3] Inst Pasteur, Unite Regulat Enzymat & Activites Cellulaires, F-75724 Paris 15, France
[4] Case Western Reserve Univ, Dept Biochem, Cleveland, OH 44106 USA
[5] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD 20742 USA
来源:
关键词:
D O I:
10.1186/1742-4690-3-91
中图分类号:
Q93 [微生物学];
学科分类号:
071005 ;
100705 ;
摘要:
Background: HIV-1 recombination between different subtypes has a major impact on the global epidemic. The generation of these intersubtype recombinants follows a defined set of events starting with dual infection of a host cell, heterodiploid virus production, strand transfers during reverse transcription, and then selection. In this study, recombination frequencies were measured in the C1-C4 regions of the envelope gene in the presence (using a multiple cycle infection system) and absence (in vitro reverse transcription and single cycle infection systems) of selection for replication-competent virus. Ugandan subtypes A and D HIV-1 env sequences (115-A, 120-A, 89-D, 122-D, 126-D) were employed in all three assay systems. These subtypes co-circulate in East Africa and frequently recombine in this human population. Results: Increased sequence identity between viruses or RNA templates resulted in increased recombination frequencies, with the exception of the 115-A virus or RNA template. Analyses of the recombination breakpoints and mechanistic studies revealed that the presence of a recombination hotspot in the C3/V4 env region, unique to 115-A as donor RNA, could account for the higher recombination frequencies with the 115-A virus/template. Single-cycle infections supported proportionally less recombination than the in vitro reverse transcription assay but both systems still had significantly higher recombination frequencies than observed in the multiple-cycle virus replication system. In the multiple cycle assay, increased replicative fitness of one HIV-1 over the other in a dual infection dramatically decreased recombination frequencies. Conclusion: Sequence variation at specific sites between HIV-1 isolates can introduce unique recombination hotspots, which increase recombination frequencies and skew the general observation that decreased HIV-1 sequence identity reduces recombination rates. These findings also suggest that the majority of intra- or intersubtype A/D HIV-1 recombinants, generated with each round of infection, are not replication-competent and do not survive in the multiple-cycle system. Ability of one HIV-1 isolate to outgrow the other leads to reduced co-infections, heterozygous virus production, and recombination frequencies.
引用
收藏
页数:17
相关论文