Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: A molecular dynamics simulation study

被引:117
作者
Cournia, Zoe
Ullmann, G. Matthias
Smith, Jeremy C.
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, D-69120 Heidelberg, Germany
[2] Univ Bayreuth, D-95447 Bayreuth, Germany
[3] Univ Tennessee, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[4] Univ Tennessee, Ctr Biophys Mol, Oak Ridge, TN 37831 USA
关键词
D O I
10.1021/jp065172i
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lipid raft/domain formation may arise as a result of the effects of specific sterols on the physical properties of membranes. Here, using molecular dynamics simulation, we examine the effects of three closely-related sterols, ergosterol, cholesterol, and lanosterol, at a biologically relevant concentration (40 mol %) on the structural properties of a model dipalmitoyl phosphatidylcholine (DPPC) membrane at 309 and 323 K. All three sterols are found to order the DPPC acyl tails and condense the membrane relative to the DPPC liquid-phase membrane, but each one does this to a significantly different degree. The smooth alpha-face of ergosterol, together with the presence of tail unsaturation in this sterol, leads to closer interaction of ergosterol with the lipids and closer packing of the lipids with each other, so ergosterol has a higher condensing effect on the membrane, as reflected by the area per lipid. Moreover, ergosterol induces a higher proportion of trans lipid conformers, a thicker membrane, and higher lipid order parameters and is aligned more closely with the membrane normal. Ergosterol also positions itself closer to the bilayer/water interface. In contrast, the rough alpha-face of lanosterol leads to a less close interaction of the steroid ring system with the phospholipid acyl chains, and so lanosterol orders, straightens, and packs the lipid acyl chains less well and is less closely aligned with the membrane normal. Furthermore, lanosterol lies closer to the relatively disordered membrane center than do the other sterols. The behavior of cholesterol in all the above respects is intermediate between that of lanosterol and ergosterol. The findings here may explain why ergosterol is the most efficient of the three sterols at promoting the liquid-ordered phase and lipid domain formation and may also furnish part of the explanation as to why cholesterol is evolutionarily preferred over lanosterol in higher-vertebrate plasma membranes.
引用
收藏
页码:1786 / 1801
页数:16
相关论文
共 118 条
[1]  
Alberts B., 1994, MOL BIOL CELL
[2]   LATERAL DIFFUSION IN THE LIQUID-PHASES OF DIMYRISTOYLPHOSPHATIDYLCHOLINE CHOLESTEROL LIPID BILAYERS - A FREE-VOLUME ANALYSIS [J].
ALMEIDA, PFF ;
VAZ, WLC ;
THOMPSON, TE .
BIOCHEMISTRY, 1992, 31 (29) :6739-6747
[3]   Condensed complexes and the calorimetry of cholesterol-phospholipid bilayers [J].
Anderson, TG ;
McConnell, HM .
BIOPHYSICAL JOURNAL, 2001, 81 (05) :2774-2785
[4]   Methodological issues in lipid bilayer simulations [J].
Anézo, C ;
de Vries, AH ;
Höltje, HD ;
Tieleman, DP ;
Marrink, SJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (35) :9424-9433
[5]   Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach [J].
Arora, A ;
Raghuraman, H ;
Chattopadhyay, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 318 (04) :920-926
[6]   Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes [J].
Bacia, K ;
Schwille, P ;
Kurzchalia, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (09) :3272-3277
[7]   COMPARATIVE CONFORMATIONAL-ANALYSIS OF CHOLESTEROL AND ERGOSTEROL BY MOLECULAR MECHANICS [J].
BAGINSKI, M ;
TEMPCZYK, A ;
BOROWSKI, E .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 1989, 17 (03) :159-166
[8]   Molecular properties of amphotericin B membrane channel: A molecular dynamics simulation [J].
Baginski, M ;
Resat, H ;
McCammon, JA .
MOLECULAR PHARMACOLOGY, 1997, 52 (04) :560-570
[9]   Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrPSc) into contiguous membranes [J].
Baron, GS ;
Wehrly, K ;
Dorward, DW ;
Chesebro, B ;
Caughey, B .
EMBO JOURNAL, 2002, 21 (05) :1031-1040
[10]   Molecular dynamics study of bacteriorhodopsin and the purple membrane [J].
Baudry, J ;
Tajkhorshid, E ;
Molnar, F ;
Phillips, J ;
Schulten, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (05) :905-918