On the presence of end effects and their melioration in wavelet-based analysis

被引:55
作者
Kijewski, T [1 ]
Kareem, A [1 ]
机构
[1] Univ Notre Dame, NatHaz Modeling Lab, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA
关键词
D O I
10.1006/jsvi.2001.4227
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Acoustic signal processing
引用
收藏
页码:980 / 988
页数:9
相关论文
共 6 条
[1]  
Chui C.K., 1992, WAVELET ANAL APPL IN
[2]  
Gabor D., 1946, J I ELEC ENGRS PART, V93, P429, DOI [DOI 10.1049/JI-3-2.1946.0074, 10.1049/ji-3-2.1946.0074, 10.1049/JI-3-2.1946.0074]
[3]  
GROSSMAN A, 1985, MATH PHYSICS, P131
[4]  
Gurley K, 1999, ENG STRUCT, V21, P149
[5]  
KIJEWSKI T, IN PRESS COMPUTER AI
[6]   Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform [J].
Staszewski, WJ .
JOURNAL OF SOUND AND VIBRATION, 1998, 214 (04) :639-658