Plasma membrane cholesterol: A critical determinant of cellular energetics and tubular resistance to attack

被引:57
作者
Zager, RA [1 ]
Johnson, A [1 ]
Anderson, K [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
关键词
cholesterol oxidase; adenosine triphosphate; calveolae; rafts; acquired cytoresistance; injury pathways;
D O I
10.1046/j.1523-1755.2000.00154.x
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background. Cholesterol is a major component of plasma membranes, forming membrane microdomains ("rafts" or "caveolae") via hydrophobic interactions with sphingolipids. We have recently demonstrated that tubule cholesterol levels rise by 18 hours following diverse forms of injury, and this change helps to protect kidneys from further damage (so-called acquired cytoresistance). The present study was undertaken to better define the effects of membrane cholesterol/microdomains on tubule homeostasis and cell susceptibility to superimposed att;lck. Methods. Plasma membrane cholesterol was perturbed in normal mouse proximal tubular segments with either cholesterol esterase (CE) ol cholesterol oxidase (CO). Alternatively. cholesterol-sphingomyelin complexes were altered by sphingomyelinase (SMase) treatment. Changes in cell energetics (ATP/ADP ratios + ouabain), viability [lactate dehydrogenase (LDH) release], phospholipid profiles, and susceptibility to injury (Fe-induced oxidant stress, PLA(2), Ca2+ ionophore) were determined. The impacts of selected cytoprotectants were also assessed. Results: Within 15 minutes, CE and CO each induced approximately 90% ATP/ADF ratio suppressions. These were seen prior to lethal cell injury (LDH release), and it was ouabain resistant (suggesting decreased ATP production, not increased consumption). SMase also depressed ATP without inducing cell death. After 45 minutes, CE and CO each caused marked cytotoxicity (up to 70% LDH release). However, different injury mechanisms were operative since (]) CE, but not CO, toxicity significantly altered cell phospholipid profiles, and (2) 2 mmol/L glycine completely blocked CE- but not CO-mediated cell death. Antioxidants also failed to attenuate CO cytotoxicity. Disturbing cholesterol/microdomains with a sublytic CE dose dramatically increased tubule susceptibility to Fe-mediated oxidative stress and Ca2+ overload, but not PLA(2)-mediated damage. Conclusion. Intact plasma membrane cholesterol/microdomains are critical for maintaining cell viability both under basal conditions and during superimposed attack. When perturbed, complex injury pathways can be impacted, with potential implications for both the induction of acute tubular damage and the emergence of the postinjury cytoresistance state.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 53 条
[1]   INDUCTION OF HEME OXYGENASE IN TOXIC RENAL INJURY - A PROTECTIVE ROLE IN CISPLATIN NEPHROTOXICITY IN THE RAT [J].
AGARWAL, A ;
BALLA, J ;
ALAM, J ;
CROATT, AJ ;
NATH, KA .
KIDNEY INTERNATIONAL, 1995, 48 (04) :1298-1307
[2]   The caveolae membrane system [J].
Anderson, RGW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :199-225
[3]   In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity [J].
Baliga, R ;
Zhang, ZW ;
Baliga, M ;
Ueda, N ;
Shah, SV .
KIDNEY INTERNATIONAL, 1998, 53 (02) :394-401
[4]   MECHANISMS OF ISCHEMIC ACUTE-RENAL-FAILURE [J].
BONVENTRE, JV .
KIDNEY INTERNATIONAL, 1993, 43 (05) :1160-1178
[5]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[6]   Structure of detergent-resistant membrane domains: Does phase separation occur in biological membranes? [J].
Brown, DA ;
London, E .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 240 (01) :1-7
[7]   Structure and origin of ordered lipid domains in biological membranes [J].
Brown, DA ;
London, E .
JOURNAL OF MEMBRANE BIOLOGY, 1998, 164 (02) :103-114
[8]  
Coleman P S, 1997, Subcell Biochem, V28, P363
[9]  
COX A D, 1992, Critical Reviews in Oncogenesis, V3, P365
[10]  
ELLIOTT WC, 1982, J LAB CLIN MED, V100, P513