Lineage-specific evolutionary rate in mammalian mtDNA

被引:88
作者
Gissi, C
Reyes, A
Pesole, G
Saccone, C
机构
[1] Univ Bari, Dipartimento Biochim & Biol Mol, I-70125 Bari, Italy
[2] CNR, Ctr Studio Mitocondri & Metab Energet, I-70126 Bari, Italy
[3] Univ Milan, Dipartimento Fisiol & Biochim Gen, Milan, Italy
关键词
mitochondrial DNA; mammalian phylogeny; molecular evolution; nucleotide substitution rate; body size; metabolic rate; generation time;
D O I
10.1093/oxfordjournals.molbev.a026383
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The existence of a Lineage-specific nucleotide substitution rate in mammalian mtDNA has been investigated by analyzing the mtDNA of all available species, that is, 35 complete mitochondrial genomes from 14 mammalian orders. A detailed study of their evolutionary dynamics has been carried out on both ribosomal RNA and first and second codon positions (P12) of H-strand protein-coding genes by using two different types of relative-rate tests. Results are quite congruent between ribosomal and P12 sites. Significant rate variations have been observed among orders and among species of the same order. However, rate variation does not exceed 1.8-fold between the fastest (Proboscidea and Primates) and the slowest (Perissodactyla) evolving orders. Thus, the observed mitochondrial rate variations among taxa do not invalidate the suitability of mtDNA for drawing mammalian phylogeny. Dependence of evolutionary rare differences on variations in mutation and/or fixation rates was examined. Body size, generation time, and metabolic rate were tested, and no significant correlation was observed between them and the taxon-specific evolutionary rates, most likely because the latter might be influenced by multiple overlapping variable constraints.
引用
收藏
页码:1022 / 1031
页数:10
相关论文
共 60 条
[1]   IMPROVED DATING OF THE HUMAN CHIMPANZEE SEPARATION IN THE MITOCHONDRIAL-DNA TREE - HETEROGENEITY AMONG AMINO-ACID SITES [J].
ADACHI, J ;
HASEGAWA, M .
JOURNAL OF MOLECULAR EVOLUTION, 1995, 40 (06) :622-628
[2]   TEMPO AND MODE OF MITOCHONDRIAL-DNA EVOLUTION IN VERTEBRATES AT THE AMINO-ACID-SEQUENCE LEVEL - RAPID EVOLUTION IN WARM-BLOODED VERTEBRATES [J].
ADACHI, J ;
CAO, Y ;
HASEGAWA, M .
JOURNAL OF MOLECULAR EVOLUTION, 1993, 36 (03) :270-281
[3]  
ADKINS RM, 1994, J MOL EVOL, V38, P215
[4]   Evolution of eutherian cytochrome c oxidase subunit II: Heterogeneous rates of protein evolution and altered interaction with cytochrome c [J].
Adkins, RM ;
Honeycutt, RL ;
Disotell, TR .
MOLECULAR BIOLOGY AND EVOLUTION, 1996, 13 (10) :1393-1404
[5]  
[Anonymous], 1988, VERTEBRATE PALEONTOL
[6]   A complete mitochondrial DNA molecule of the white-handed gibbon, Hylobates lar, and comparison among individual mitochondrial genes of all hominoid genera [J].
Arnason, U ;
Gullberg, A ;
Xu, XF .
HEREDITAS, 1996, 124 (02) :185-189
[7]   Molecular timing of primate divergences as estimated by two nonprimate calibration points [J].
Arnason, U ;
Gullberg, A ;
Janke, A .
JOURNAL OF MOLECULAR EVOLUTION, 1998, 47 (06) :718-727
[8]   Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs [J].
Arnason, U ;
Gullberg, A ;
Janke, A ;
Xu, XF .
JOURNAL OF MOLECULAR EVOLUTION, 1996, 43 (06) :650-661
[9]  
AVISE JC, 1992, MOL BIOL EVOL, V9, P457
[10]  
BENTON MJ, 1997, VERTEBRATE PALEONTOL