Weighted ENO schemes for Hamilton-Jacobi equations

被引:896
作者
Jiang, GS
Peng, DP
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
ENO; weighted ENO; Hamilton jacobi equation; shape-from-shading; level set;
D O I
10.1137/S106482759732455X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a weighted ENO (essentially nonoscillatory) scheme to approximate the viscosity solution of the Hamilton Jacobi equation: phi(t) + H (x(1),...,x(d), t, phi, phi(x1),...,phi(xd)) = 0. This weighted ENO scheme is constructed upon and has the same stencil nodes as the third order ENO scheme but can be as high as fifth order accurate in the smooth part of the solution. In addition to the accuracy improvement, numerical comparisons between the two schemes also demonstrate that the weighted ENO scheme is more robust than the ENO scheme.
引用
收藏
页码:2126 / 2143
页数:18
相关论文
共 17 条
[1]   THE NONCONVEX MULTIDIMENSIONAL RIEMANN PROBLEM FOR HAMILTON-JACOBI EQUATIONS [J].
BARDI, M ;
OSHER, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (02) :344-351
[2]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8
[3]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[4]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[5]  
HARTEN A, 1987, J COMPUT PHYS, V71, P231, DOI [10.1016/0021-9991(87)90031-3, 10.1006/jcph.1996.5632]
[6]   Efficient implementation of weighted ENO schemes [J].
Jiang, GS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (01) :202-228
[7]   SHAPE-FROM-SHADING, VISCOSITY SOLUTIONS AND EDGES [J].
LIONS, PL ;
ROUY, E ;
TOURIN, A .
NUMERISCHE MATHEMATIK, 1993, 64 (03) :323-353
[8]   WEIGHTED ESSENTIALLY NONOSCILLATORY SCHEMES [J].
LIU, XD ;
OSHER, S ;
CHAN, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 115 (01) :200-212
[10]   FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED - ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS [J].
OSHER, S ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) :12-49