A Universal Inequality for Axisymmetric and Stationary Black Holes with Surrounding Matter in the Einstein-Maxwell Theory

被引:40
作者
Hennig, Joerg [1 ]
Cederbaum, Carla [1 ]
Ansorg, Marcus [1 ,2 ]
机构
[1] Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
[2] Helmholtz Zentrum Munchen, Inst Biomath & Biometry, D-85764 Neuherberg, Germany
关键词
Black Hole; Global Minimizer; Variational Problem; Event Horizon; Black Hole Horizon;
D O I
10.1007/s00220-009-0889-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that in Einstein-Maxwell theory the inequality (8 pi J)(2)+(4 pi Q(2))(2) < A(2) holds for any sub-extremal axisymmetric and stationary black hole with arbitrary surrounding matter. Here J, Q, and A are angular momentum, electric charge, and horizon area of the black hole, respectively.
引用
收藏
页码:449 / 467
页数:19
相关论文
共 9 条
[1]   A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter [J].
Ansorg, Marcus ;
Pfister, Herbert .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (03)
[2]  
Bardeen J. M., 1973, Black Holes (Les Astres Occlus), P241
[3]   Extremality conditions for isolated and dynamical horizons [J].
Booth, Ivan ;
Fairhurst, Stephen .
PHYSICAL REVIEW D, 2008, 77 (08)
[4]  
BUTTAZZO G, 1998, ONE DIMENSIONAL VARI
[5]  
Carter B., 1973, Black Hole Equilibrium States, Black Holes, P57
[6]  
Evans LC., 2002, PARTIAL DIFFERENTIAL
[7]   A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter [J].
Hennig, Joerg ;
Ansorg, Marcus ;
Cederbaum, Carla .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (16)
[8]  
Rauch J, 1991, Graduate Texts in Mathematics
[9]  
Yosida K., 1995, FUNCTION ANAL