Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates

被引:135
作者
Caminiti, Roberto [2 ]
Ghaziri, Hassan [3 ]
Galuske, Ralf [4 ]
Hof, Patrick R. [5 ]
Innocenti, Giorgio M. [1 ]
机构
[1] Karolinska Inst, Dept Neurosci, S-17177 Stockholm, Sweden
[2] Univ Roma La Sapienza, Dept Physiol & Pharmacol, I-00185 Rome, Italy
[3] Swiss Fed Inst Technol, Sch Informat & Commun Sci, Lab Non Linear Syst, CH-1015 Lausanne, Switzerland
[4] Tech Univ Darmstadt, Dept Biol, D-64287 Darmstadt, Germany
[5] Mt Sinai Sch Med, Dept Neurosci, New York, NY 10029 USA
关键词
axons; cerebral cortex; corpus callosum; information transfer; interhemispheric; FERRET MUSTELA-PUTORIUS; CORPUS-CALLOSUM; RHESUS-MONKEY; WHITE-MATTER; CONDUCTION; AREA-17;
D O I
10.1073/pnas.0907655106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The corpus callosum (CC) provides the main route of communication between the 2 hemispheres of the brain. In monkeys, chimpanzees, and humans, callosal axons of distinct size interconnect functionally different cortical areas. Thinner axons in the genu and in the posterior body of the CC interconnect the prefrontal and parietal areas, respectively, and thicker axons in the midbody and in the splenium interconnect primary motor, somatosensory, and visual areas. At all locations, axon diameter, and hence its conduction velocity, increases slightly in the chimpanzee compared with the macaque because of an increased number of large axons but not between the chimpanzee and man. This, together with the longer connections in larger brains, doubles the expected conduction delays between the hemispheres, from macaque to man, and amplifies their range about 3-fold. These changes can have several consequences for cortical dynamics, particularly on the cycle of interhemispheric oscillators.
引用
收藏
页码:19551 / 19556
页数:6
相关论文
共 23 条
[1]   FIBER COMPOSITION OF THE HUMAN CORPUS-CALLOSUM [J].
ABOITIZ, F ;
SCHEIBEL, AB ;
FISHER, RS ;
ZAIDEL, E .
BRAIN RESEARCH, 1992, 598 (1-2) :143-153
[2]   THE CALLOSAL SYSTEM OF THE SUPERIOR PARIETAL LOBULE IN THE MONKEY [J].
CAMINITI, R ;
SBRICCOLI, A .
JOURNAL OF COMPARATIVE NEUROLOGY, 1985, 237 (01) :85-99
[3]   Global optimization of cerebral cortex layout [J].
Cherniak, C ;
Mokhtarzada, Z ;
Rodriguez-Esteban, R ;
Changizi, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (04) :1081-1086
[4]   Rhesus monkey and human share a similar topography of the corpus callosum as revealed by diffusion tensor MRI in vivo [J].
Hofer, Sabine ;
Merboldt, Klaus-Dietmar ;
Tammer, Roland ;
Frahm, Jens .
CEREBRAL CORTEX, 2008, 18 (05) :1079-1084
[5]   NEW ENDOCRANIAL VALUES FOR EAST AFRICAN EARLY HOMINIDS [J].
HOLLOWAY, RL .
NATURE, 1973, 243 (5402) :97-99
[6]   MORPHOLOGY OF CALLOSAL AXONS INTERCONNECTING AREA-17 AND AREA-18 OF THE CAT [J].
HOUZEL, JC ;
MILLERET, C ;
INNOCENTI, G .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1994, 6 (06) :898-917
[7]   CELLULAR ASPECTS OF CALLOSAL CONNECTIONS AND THEIR DEVELOPMENT [J].
INNOCENTI, GM ;
AGGOUNZOUAOUI, D ;
LEHMANN, P .
NEUROPSYCHOLOGIA, 1995, 33 (08) :961-&
[8]   Architecture and callosal connections of visual areas 17, 18, 19 and 21 in the ferret (Mustela putorius) [J].
Innocenti, GM ;
Manger, PR ;
Masiello, I ;
Colin, I ;
Tettoni, L .
CEREBRAL CORTEX, 2002, 12 (04) :411-422
[9]   Polychronization: Computation with spikes [J].
Izhikevich, Eugene M. .
NEURAL COMPUTATION, 2006, 18 (02) :245-282
[10]   CYTOLOGICAL AND QUANTITATIVE CHARACTERISTICS OF 4 CEREBRAL COMMISSURES IN THE RHESUS-MONKEY [J].
LAMANTIA, AS ;
RAKIC, P .
JOURNAL OF COMPARATIVE NEUROLOGY, 1990, 291 (04) :520-537