Optical properties of deep ice at the South Pole: Absorption

被引:37
作者
Askebjer, P
Barwick, SW
Bergstrom, L
Bouchta, A
Carius, S
Dalberg, E
Engel, K
Erlandsson, B
Goobar, A
Gray, L
Hallgren, A
Halzen, F
Heukenkamp, H
Hulth, PO
Hundertmark, S
Jacobsen, J
Karle, A
Kandhadai, V
Liubarsky, I
Lowder, D
Miller, T
Mock, P
Morse, RM
Porrata, R
Price, PB
Richards, A
Rubinstein, H
Schneider, E
Spiering, C
Streicher, O
Sun, Q
Thon, T
Tilav, S
Wischnewski, R
Walck, C
Yodh, GB
机构
[1] UNIV CALIF IRVINE, IRVINE, CA 92717 USA
[2] UPPSALA UNIV, UPPSALA, SWEDEN
[3] DESY, ZEUTHEN, GERMANY
[4] UNIV CALIF BERKELEY, BERKELEY, CA 94720 USA
[5] UNIV WISCONSIN, MADISON, WI USA
基金
美国国家科学基金会;
关键词
D O I
10.1364/AO.36.004168
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss recent measurements of the wavelength-dependent absorption coefficients in deep South Pole ice. The method uses transit-time distributions of pulses from a variable-frequency laser sent between emitters and receivers embedded in the ice. At depths of 800-1000 m scattering is dominated by residual air bubbles, whereas absorption occurs both in ice itself and in insoluble impurities. The absorption coefficient increases approximately exponentially with wavelength in the measured interval 410-610 nm. At the shortest wavelength our value is approximately a factor 20 below previous values obtained for laboratory ice and lake ice; with increasing wavelength the discrepancy with previous measurements decreases. At similar to 415 to similar to 500 nm the experimental uncertainties are small enough for us to resolve an extrinsic contribution to absorption in ice: submicrometer dust particles contribute by an amount that increases with depth and corresponds well with the expected increase seen near the Last Glacial Maximum in Vostok and Dome C ice cores. The laser pulse method allows remote mapping of gross structure in dust concentration as a function of depth in glacial ice. (C) 1997 Optical Society of America.
引用
收藏
页码:4168 / 4180
页数:13
相关论文
共 35 条
  • [1] OPTICAL-PROPERTIES OF THE SOUTH-POLE ICE AT DEPTHS BETWEEN 0.8 AND 1 KILOMETER
    ASKEBJER, P
    BARWICK, SW
    BERGSTROM, L
    BOUCHTA, A
    CARIUS, S
    COULTHARD, A
    ENGEL, K
    ERLANDSSON, B
    GOOBAR, A
    GRAY, L
    HALLGREN, A
    HALZEN, F
    HULTH, PO
    JACOBSEN, J
    JOHANSSON, S
    KANDHADAI, V
    LIUBARSKY, I
    LOWDER, D
    MILLER, T
    MOCK, PC
    MORSE, R
    PORRATA, R
    PRICE, PB
    RICHARDS, A
    RUBINSTEIN, H
    SCHNEIDER, E
    SUN, Q
    TILAV, S
    WALCK, G
    YODH, G
    [J]. SCIENCE, 1995, 267 (5201) : 1147 - 1150
  • [2] ASKEBJER P, 1995, J GLACIOL, V41, P445
  • [3] ASKEBJER P, 1997, GEOPHYS RES LETT
  • [4] COSMIC-RAY MUONS IN THE DEEP OCEAN
    BABSON, J
    BARISH, B
    BECKERSZENDY, R
    BRADNER, H
    CADY, R
    CLEM, J
    DYE, ST
    GAIDOS, J
    GORHAM, P
    GRIEDER, PKF
    JAWORSKI, M
    KITAMURA, T
    KROPP, W
    LEARNED, JG
    MATSUNO, S
    MARCH, R
    MITSUI, K
    OCONNOR, D
    OHASHI, Y
    OKADA, A
    PETERSON, V
    PRICE, L
    REINES, F
    ROBERTS, A
    ROOS, C
    SOBEL, H
    STENGER, VJ
    WEBSTER, M
    WILSON, C
    [J]. PHYSICAL REVIEW D, 1990, 42 (11) : 3613 - 3620
  • [5] Belolaptikov I. A., 1991, Nuclear Physics B, Proceedings Supplements, V19, P388, DOI 10.1016/0920-5632(91)90216-2
  • [6] Belolaptikov IA, 1995, 24TH INTERNATIONAL COSMIC RAY CONFERENCE, VOL 1, P770
  • [7] Stochastic problems in physics and astronomy
    Chandrasekhar, S
    [J]. REVIEWS OF MODERN PHYSICS, 1943, 15 (01) : 0001 - 0089
  • [8] d'Almeida G.A., 1991, ATMOSPHERIC AEROSOLS
  • [9] VARIANCE ALGORITHM FOR MINIMIZATION
    DAVIDON, WC
    [J]. COMPUTER JOURNAL, 1968, 10 (04) : 406 - &
  • [10] CHEMISTRY OF SOUTH POLAR SNOW
    DELMAS, R
    BRIAT, M
    LEGRAND, M
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1982, 87 (NC6) : 4314 - 4318