Noncommuting gauge fields as a Lagrange fluid

被引:41
作者
Jackiw, R [1 ]
Pi, SY
Polychronakos, AP
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Rockefeller Univ, Dept Phys, New York, NY 10021 USA
[4] Univ Ioannina, Dept Phys, GR-45110 Ioannina, Greece
关键词
D O I
10.1006/aphy.2002.6290
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lagrange description of an ideal fluid gives rise in a natural way to a gauge potential and a Poisson structure that are classical precursors of analogous noncommuting entities. With this observation we are led to construct gauge-covariant coordinate transformations on a noncommuting space. Also we recognize the Seiberg-Witten map from noncommuting to commuting variables as the quantum correspondent of the Lagrange to Euler map in fluid mechanics. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:157 / 173
页数:17
相关论文
共 14 条
[1]  
ANTONIOU I, HEPTH0106119
[2]  
Arnold V. I., 1998, TOPOLOGICAL METHODS
[3]   Comments on noncommutative gauge theories [J].
Bak, D ;
Lee, K ;
Park, LH .
PHYSICS LETTERS B, 2001, 501 (3-4) :305-312
[4]  
Gross DJ, 2000, ADV THEOR MATH PHYS, V4
[5]   Covariant coordinate transformations on noncommutative space [J].
Jackiw, R ;
Pi, SY .
PHYSICAL REVIEW LETTERS, 2002, 88 (11) :4
[6]  
JACKIW R, HEPTH0111122
[7]  
Jackiw R, 2002, Lectures on fluid dynamics: A particle theorist's view of supersymmetric, non-Abelian, noncommutative fluid mechanics and d-Branes
[8]   Currents and superpotentials in classical gauge-invariant theories: I. Local results with applications to perfect fluids and general relativity [J].
Julia, B ;
Silva, S .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (08) :2173-2215
[9]   Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces [J].
Jurco, B ;
Schraml, S ;
Schupp, P ;
Wess, J .
EUROPEAN PHYSICAL JOURNAL C, 2000, 17 (03) :521-526
[10]   Gauge theory on noncommutative spaces [J].
Madore, J ;
Schraml, S ;
Schupp, P ;
Wess, J .
EUROPEAN PHYSICAL JOURNAL C, 2000, 16 (01) :161-167