Wavelet packets with uniform time-frequency localization

被引:24
作者
Villemoes, LF [1 ]
机构
[1] Coding Technol, S-11352 Stockholm, Sweden
关键词
D O I
10.1016/S1631-073X(02)02570-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct basic wavelet packets with uniformly bounded localization in both time and frequency. The corresponding orthonormal bases of wavelet packets are parametrized by dyadic segmentations obeying a local variation condition.
引用
收藏
页码:793 / 796
页数:4
相关论文
共 12 条
[1]  
BORUP L, IN PRESS J APPROX TH
[2]  
COHEN A, 1996, SUBBAND WAVELET TRAN, P189
[3]  
Coifman R, 1992, Wavelets and Their Applications, P453
[4]   A SIMPLE WILSON ORTHONORMAL BASIS WITH EXPONENTIAL DECAY [J].
DAUBECHIES, I ;
JAFFARD, S ;
JOURNE, JL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (02) :554-572
[5]   WAVELETS IN WANDERING SUBSPACES [J].
GOODMAN, TNT ;
LEE, SL ;
TANG, WS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (02) :639-654
[6]  
Hess-Nielsen N., 1994, Applied and Computational Harmonic Analysis, V1, P157, DOI 10.1006/acha.1994.1003
[7]  
LAENG E, 1990, CR ACAD SCI I-MATH, V31, P677
[8]   Brushlets: A tool for directional image analysis and image compression [J].
Meyer, FG ;
Coifman, RR .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1997, 4 (02) :147-187
[9]  
Meyer Y., 1993, WAVELETS ALGORITHMS
[10]   Mean size of wavelet packets [J].
Nielsen, M ;
Zhou, DX .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (01) :22-34