A common cortical substrate activated by horizontal and vertical sound movement in the human brain

被引:107
作者
Pavani, F [1 ]
Macaluso, E
Warren, JD
Driver, J
Griffiths, TD
机构
[1] UCL, Inst Cognit Neurosci, London, England
[2] UCL, Wellcome Dept Imaging Neurosci, London, England
[3] Univ Newcastle, Sch Med, Auditory Grp, Newcastle Upon Tyne, Tyne & Wear, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
D O I
10.1016/S0960-9822(02)01143-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Perception of movement in acoustic space depends on comparison of the sound waveforms reaching the two ears (binaural cues) as well as spectrotemporal analysis of the waveform at each ear (monaural cues) [1]. The relative importance of these two cues is different for perception of vertical or horizontal motion, with spectrotemporal analysis likely to be more important for perceiving vertical shifts. In humans, functional imaging studies have shown that sound movement in the horizontal plane activates brain areas distinct from the primary auditory cortex, in parietal and frontal lobes [2-7] and in the planum temporale [6, 8]. However, no previous work has examined activations for vertical sound movement. It is therefore difficult to generalize previous imaging studies, based on horizontal movement only, to multidimensional auditory space perception. Using externalized virtual-space sounds in a functional magnetic resonance imaging (fMRI) paradigm to investigate this, we compared vertical and horizontal shifts in sound location. A common bilateral network of brain areas was activated in response to both horizontal and vertical sound movement. This included the planum temporale, superior parietal cortex, and premotor cortex. Sounds perceived laterally in virtual space were associated with contralateral activation of the auditory cortex. These results demonstrate that sound movement in vertical and horizontal dimensions engages a common processing network in the human cerebral cortex and show that multidimensional spatial properties of sounds are processed at this level.
引用
收藏
页码:1584 / 1590
页数:7
相关论文
共 40 条
[1]   What and "where" in the human auditory system [J].
Alain, C ;
Arnott, SR ;
Hevenor, S ;
Graham, S ;
Grady, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) :12301-12306
[2]   A movement-sensitive area in auditory cortex [J].
Baumgart, F ;
Gaschler-Markefski, B ;
Woldorff, MG ;
Heinze, HJ ;
Scheich, H .
NATURE, 1999, 400 (6746) :724-726
[3]   DISORDERS OF PERCEIVED AUDITORY LATERALIZATION AFTER LESIONS OF THE RIGHT-HEMISPHERE [J].
BISIACH, E ;
CORNACCHIA, L ;
STERZI, R ;
VALLAR, G .
BRAIN, 1984, 107 (MAR) :37-52
[4]  
Blauert J., 1983, SPATIAL HEARING PSYC
[5]   Polymodal motion processing in posterior parietal and promotor cortex: A human fMRI study strongly implies equivalencies between humans and monkeys [J].
Bremmer, F ;
Schlack, A ;
Shah, NJ ;
Zafiris, O ;
Kubischik, M ;
Hoffmann, KP ;
Zilles, K ;
Fink, GR .
NEURON, 2001, 29 (01) :287-296
[6]   Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans [J].
Bushara, KO ;
Weeks, RA ;
Ishii, K ;
Catalan, MJ ;
Tian, B ;
Rauschecker, JP ;
Hallett, M .
NATURE NEUROSCIENCE, 1999, 2 (08) :759-766
[7]   Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways [J].
Clarke, S ;
Bellmann, A ;
Meuli, RA ;
Assal, G ;
Steck, AJ .
NEUROPSYCHOLOGIA, 2000, 38 (06) :797-807
[8]   AUTOMATIC 3D INTERSUBJECT REGISTRATION OF MR VOLUMETRIC DATA IN STANDARDIZED TALAIRACH SPACE [J].
COLLINS, DL ;
NEELIN, P ;
PETERS, TM ;
EVANS, AC .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1994, 18 (02) :192-205
[9]   Multisubject fMRI studies and conjunction analyses [J].
Friston, KJ ;
Holmes, AP ;
Price, CJ ;
Büchel, C ;
Worsley, KJ .
NEUROIMAGE, 1999, 10 (04) :385-396
[10]   Right parietal cortex is involved in the perception of sound movement in humans [J].
Griffiths, TD ;
Rees, G ;
Rees, A ;
Green, GGR ;
Witton, C ;
Rowe, D ;
Buchel, C ;
Turner, R ;
Frackowiak, RSJ .
NATURE NEUROSCIENCE, 1998, 1 (01) :74-79