A new family of solvers for some, classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids

被引:398
作者
Ammar, A.
Mokdad, B.
Chinesta, F.
Keunings, R.
机构
[1] Univ Grenoble 1, CNRS, Lab Rheol, INPG,UMR 5520, F-38041 Grenoble 9, France
[2] CNRS, ENSAM, ESEM, Lab Mecan Syst & Procedes,UMR 8106, F-75013 Paris, France
[3] Catholic Univ Louvain, CESAME, B-1348 Louvain, Belgium
关键词
complex fluids; kinetic theory; model reduction; multidimensional problems; separation of variables; numerical modeling;
D O I
10.1016/j.jnnfm.2006.07.007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Kinetic theory models involving the Fokker-Planck equation can be accurately discretized using a mesh support (finite elements, finite differences, finite volumes, spectral techniques, etc.). However, these techniques involve a high number of approximation functions. In the finite element framework, widely used in complex flow simulations, each approximation function is related to a node that defines the associated degree of freedom. When the model involves high dimensional spaces (including physical and conformation spaces and time), standard discretization techniques fail due to an excessive computation time required to perform accurate numerical simulations. One appealing strategy that allows circumventing this limitation is based on the use of reduced approximation basis within an adaptive procedure making use of an efficient separation of variables. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 176
页数:24
相关论文
共 21 条
[1]  
ABAKUMOV AA, 1988, SOV J NUMER ANAL MAT, V3, P1
[2]   On the reduction of kinetic theory models related to finitely extensible dumbbells [J].
Ammar, A ;
Ryckelynck, D ;
Chinesta, F ;
Keunings, R .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2006, 134 (1-3) :136-147
[3]  
Ammar A, 2005, LECT NOTES COMPUTATI, V43, P1
[4]  
Bungartz HJ, 2004, ACT NUMERIC, V13, P147, DOI 10.1017/S0962492904000182
[5]   Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems .1. Method [J].
Chaubal, CV ;
Srinivasan, A ;
Egecioglu, O ;
Leal, LG .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1997, 70 (1-2) :125-154
[6]   Simulation of dilute polymer solutions using a Fokker-Planck equation [J].
Chauvière, C ;
Lozinski, A .
COMPUTERS & FLUIDS, 2004, 33 (5-6) :687-696
[7]   On the solution of Fokker-Planck equations in steady recirculating flows involving short fiber suspensions [J].
Chinesta, F ;
Chaidron, G ;
Poitou, A .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2003, 113 (2-3) :97-125
[8]   On the Peterlin approximation for finitely extensible dumbbells [J].
Keunings, R .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1997, 68 (01) :85-100
[9]  
Keunings R., 2004, RHEOLOGY REV, P67
[10]  
KUZNETSOV YA, 1989, SOV J NUMER ANAL MAT, V4, P453