Aerobic methanotrophy in the oxic-anoxic transition zone of the Black Sea water column

被引:63
作者
Blumenberg, Martin [1 ]
Seifert, Richard [1 ]
Michaelis, Walter [1 ]
机构
[1] Univ Hamburg, Inst Biogeochem & Marine Chem, D-20146 Hamburg, Germany
关键词
D O I
10.1016/j.orggeochem.2006.08.011
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Large amounts of dissolved methane (> 98%) are effectively oxidised by anaerobic and aerobic microorganisms in the Black Sea water column. In the oxic-anoxic transition zone methane concentrations rapidly decrease and an enrichment in (CH4)-C-13 - Most likely a result of microbial methane consumption - is observed. Using high performance liquid chromatography-mass spectrometry (HPLC-MS), we show that intact bacteriohopanoids, characteristic for aerobic methanotrophic bacteria, clearly increase in the sub-oxic part of the chemocline compared to water above and below this depth interval. Moreover, the co-occurrence of aminopentol (17 beta(H),21 beta(H)-35-aminobacteriohopane-30,31,32,33,34-pentol) with aminotetrol (17 beta(H),21 beta(H)-35-aminobacteriohopane-31,32,33,34-tetrol) argues for members of the type I and/or type X cluster as the dominating bacterial methanotrophs. Our data indicate that aerobic rather than anaerobic methanotrophs are responsible for the strong C-13 enrichment in CH4 occurring in sub-oxic waters within the oxic-anoxic transition zone of the Black Sea water column. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 38 条
[1]   CARBON AND HYDROGEN ISOTOPE FRACTIONATION RESULTING FROM ANAEROBIC METHANE OXIDATION [J].
Alperin, M. ;
Reeburgh, W. ;
Whiticar, M. .
GLOBAL BIOGEOCHEMICAL CYCLES, 1988, 2 (03) :279-288
[2]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[3]   Membrane lipid patterns typify distinct anaerobic methanotrophic consortia [J].
Blumenberg, M ;
Seifert, R ;
Reitner, J ;
Pape, T ;
Michaelis, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (30) :11111-11116
[4]   Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio) [J].
Blumenberg, Martin ;
Krueger, Martin ;
Nauhaus, Katja ;
Talbot, Helen M. ;
Oppermann, Birte I. ;
Seifert, Richard ;
Pape, Thomas ;
Michaelis, Walter .
ENVIRONMENTAL MICROBIOLOGY, 2006, 8 (07) :1220-1227
[5]   ADAPTATION TO HYDROGEN-SULFIDE OF OXYGENIC AND ANOXYGENIC PHOTOSYNTHESIS AMONG CYANOBACTERIA [J].
COHEN, Y ;
JORGENSEN, BB ;
REVSBECH, NP ;
POPLAWSKI, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1986, 51 (02) :398-407
[6]   The occurrence of hopanoids in planctomycetes:: implications for the sedimentary biomarker record [J].
Damsté, JSS ;
Rijpstra, WIC ;
Schouten, S ;
Fuerst, JA ;
Jetten, MSM ;
Strous, M .
ORGANIC GEOCHEMISTRY, 2004, 35 (05) :561-566
[7]   Crenarchaeol:: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota [J].
Damsté, JSS ;
Schouten, S ;
Hopmans, EC ;
van Duin, ACT ;
Geenevasen, JAJ .
JOURNAL OF LIPID RESEARCH, 2002, 43 (10) :1641-1651
[8]   Evidence of intense archaeal and bacterial methanotrophic activity in the black sea water column [J].
Durisch-Kaiser, E ;
Klauser, L ;
Wehrli, B ;
Schubert, C .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (12) :8099-8106
[9]  
EREMEEVA LV, 1993, PHYS OCEANOGRAPHY, V4, P169
[10]   Targeted genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbe [J].
Fischer, W. W. ;
Summons, R. E. ;
Pearson, A. .
GEOBIOLOGY, 2005, 3 (01) :33-40