A final size relation for epidemic models

被引:103
作者
Arino, Julien [1 ]
Brauer, Fred
van den Driessche, P.
Watmough, James
Wu, Jianhong
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[4] Univ New Brunswick, Dept Math & Stat, Fredericton, NB E3B 5A3, Canada
[5] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
关键词
epidemic models; basic reproduction number; final size relation; vertical transmission;
D O I
10.3934/mbe.2007.4.159
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A final size relation is derived for a general class of epidemic mode ls, including models with multiple susceptible classes. The derivation depends on an explicit formula for the basic reproduction number of a general class of disease transmission models, which is extended to calculate the basic reprod uction number in models with vertical transmission. Applications are given to specific models for influenza and SARS.
引用
收藏
页码:159 / 175
页数:17
相关论文
共 16 条
  • [1] ANDERSON R M, 1991
  • [2] [Anonymous], 1994, CLASSICS APPL MATH
  • [3] Simple models for containment of a pandemic
    Arino, Julien
    Brauer, Fred
    van den Driessche, P.
    Watmough, James
    Wu, Jianhong
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2006, 3 (08) : 453 - 457
  • [4] Brauer F, 2006, MATH BIOSCI ENG, V3, P1
  • [5] Models for transmission of disease with immigration of infectives
    Brauer, F
    van den Driessche, P
    [J]. MATHEMATICAL BIOSCIENCES, 2001, 171 (02) : 143 - 154
  • [6] Busenberg S, 1993, Vertically transmitted diseases: models and dynamics, V23
  • [7] DIEKMANN O, 1990, J MATH BIOL, V28, P365
  • [8] Diekmann O., 2000, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis, and Interpretation
  • [9] Modelling strategies for controlling SARS outbreaks
    Gumel, AB
    Ruan, SG
    Day, T
    Watmough, J
    Brauer, F
    van den Driessche, P
    Gabrielson, D
    Bowman, C
    Alexander, ME
    Ardal, S
    Wu, JH
    Sahai, BM
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2004, 271 (1554) : 2223 - 2232
  • [10] Contribution to the mathematical theory of epidemics
    Kermack, WO
    McKendrick, AG
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) : 700 - 721