A method for using blocked and event-related fMRI data to study "resting state" functional connectivity

被引:463
作者
Fair, Damien A.
Schlaggar, Bradley L.
Cohen, Alexander L.
Miezin, Francis M.
Dosenbach, Nico U. F.
Wenger, Kristin K.
Fox, Michael D.
Snyder, Abraham Z.
Raichle, Marcus E.
Petersen, Steven E.
机构
[1] Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA
[2] Washington Univ, Dept Psychol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Radiol, St Louis, MO 63110 USA
[4] Washington Univ, Sch Med, Dept Anat & Neurobiol, St Louis, MO 63110 USA
[5] Washington Univ, Sch Med, Dept Pediat, St Louis, MO 63110 USA
关键词
D O I
10.1016/j.neuroimage.2006.11.051
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Resting state functional connectivity MRI (feMRI) has become a particularly useful tool for studying regional relationships in typical and atypical populations. Because many investigators have already obtained large data sets of task-related fMRI, the ability to use this existing task data for resting state fcMRI is of considerable interest. Two classes of data sets could potentially be modified to emulate resting state data. These data sets include: (1) "interleaved" resting blocks from blocked or mixed blocked/event-related sets, and (2) residual timecourses from event-related sets that lack rest blocks. Using correlation analysis, we compared the functional connectivity of resting epochs taken from a mixed blocked/event-related design fMRI data set and the residuals derived from event-related data with standard continuous resting state data to determine which class of data can best emulate resting state data. We show that, despite some differences, the functional connectivity for the interleaved resting periods taken from blocked designs is both qualitatively and quantitatively very similar to that of "continuous" resting state data. In contrast, despite being qualitatively similar to "continuous" resting state data, residuals derived from event-related design data had several distinct quantitative differences. These results suggest that the interleaved resting state data such as those taken from blocked or mixed blocked/event-related fMRI designs are well-suited for resting state functional connectivity analyses. Although using event-related data residuals for resting state functional connectivity may still be useful, results should be interpreted with care. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:396 / 405
页数:10
相关论文
共 50 条
[1]   Combining independent component analysis and correlation analysis to probe interregional connectivity in fMRI task activation datasets [J].
Arfanakis, K ;
Cordes, D ;
Haughton, VM ;
Moritz, CH ;
Quigley, MA ;
Meyerand, ME .
MAGNETIC RESONANCE IMAGING, 2000, 18 (08) :921-930
[2]   Identification of large-scale networks in the brain using fMRI [J].
Bellec, P ;
Perlbarg, V ;
Jbabdi, S ;
Pélégrini-Issac, W ;
Anton, JL ;
Doyon, J ;
Benali, H .
NEUROIMAGE, 2006, 29 (04) :1231-1243
[3]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[4]   Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment [J].
Bokde, ALW ;
Lopez-Bayo, P ;
Meindl, T ;
Pechler, S ;
Born, C ;
Faltraco, F ;
Teipel, SJ ;
Möller, HJ ;
Hampel, H .
BRAIN, 2006, 129 :1113-1124
[5]   Functional interactions of the inferior frontal cortex during the processing of words and word-like stimuli [J].
Bokde, ALW ;
Tagamets, MA ;
Friedman, RB ;
Horwitz, B .
NEURON, 2001, 30 (02) :609-617
[6]   Developmental changes in human cerebral functional organization for word generation [J].
Brown, TT ;
Lugar, HM ;
Coalson, RS ;
Miezin, FM ;
Petersen, SE ;
Schlaggar, BL .
CEREBRAL CORTEX, 2005, 15 (03) :275-290
[7]   Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI [J].
Buchel, C ;
Friston, KJ .
CEREBRAL CORTEX, 1997, 7 (08) :768-778
[8]   How good is good enough in path analysis of fMRI data? [J].
Bullmore, ET ;
Horwitz, B ;
Honey, G ;
Brammer, M ;
Williams, S ;
Sharma, T .
NEUROIMAGE, 2000, 11 (04) :289-301
[9]  
CLARK CM, 1984, BIOL PSYCHIAT, V19, P663
[10]   A comparison of analysis of variance and correlation methods for investigating cognitive development with functional magnetic resonance imaging [J].
Fair, Damien A. ;
Brown, Timothy T. ;
Petersen, Steven E. ;
Schlaggar, Bradley L. .
DEVELOPMENTAL NEUROPSYCHOLOGY, 2006, 30 (01) :531-546