SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice

被引:162
作者
Ding, Yong
Wang, Xia
Su, Lei
Zhai, JiXian
Cao, ShouYun
Zhang, DongFen
Liu, ChunYan
Bi, YuPing
Qian, Qian
Cheng, ZhuKuan
Chu, ChengCai [1 ]
Cao, XiaoFeng
机构
[1] Chinese Acad Sci, State Key Lab Plant Genom, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Natl Ctr Plant Gene Res, Inst Genet & Dev Biol, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
[4] Shandong Acad Agr Sci, High Tech Res Ctr, Key Lab Genet Improvement Crop Anim & Poultry Sha, Jinan 250100, Peoples R China
[5] Shandong Normal Univ, Coll Life Sci, Jinan 250014, Peoples R China
[6] China Natl Rice Res Inst, State Key Lab Rice Biol, Hangzhou 310006, Peoples R China
关键词
D O I
10.1105/tpc.106.048124
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although the role of H3K9 methylation in rice ( Oryza sativa) is unclear, in Arabidopsis thaliana the loss of histone H3K9 methylation by mutation of Kryptonite [ also known as SU(VAR)3-9 homolog] reduces genome-wide DNA methylation and increases the transcription of transposable elements. Here, we report that rice SDG714 ( for SET Domain Group Protein714) encodes a histone H3K9-specific methyltransferase. The C terminus of SDG714 confers enzymatic activity and substrate specificity, whereas the N terminus localizes it in the nucleus. Loss-of-function mutants of SDG714 (SDG714IR transformants) generated by RNA interference display a mostly glabrous phenotype as a result of the lack of macro trichomes in glumes, leaves, and culms compared with control plants. These mutants also show decreased levels of CpG and CNG cytosine methylation as well as H3K9 methylation at the Tos17 locus, a copia-like retrotransposon widely used for the generation of rice mutants. Most interestingly, loss of function of SDG714 can enhance transcription and cause the transposition of Tos17. Together, these results suggest that histone H3K9 methylation mediated by SDG714 is involved in DNA methylation, the transposition of transposable elements, and genome stability in rice.
引用
收藏
页码:9 / 22
页数:14
相关论文
共 62 条
[1]   ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes [J].
Alvarez-Venegas, R ;
Pien, S ;
Sadder, M ;
Witmer, X ;
Grossniklaus, U ;
Avramova, Z .
CURRENT BIOLOGY, 2003, 13 (08) :627-637
[2]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[3]   The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes [J].
Baumbusch, LO ;
Thorstensen, T ;
Krauss, V ;
Fischer, A ;
Naumann, K ;
Assalkhou, R ;
Schulz, I ;
Reuter, G ;
Aalen, RB .
NUCLEIC ACIDS RESEARCH, 2001, 29 (21) :4319-4333
[4]   Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes [J].
Cao, XF ;
Jacobsen, SE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 :16491-16498
[5]   Role of the DRM and CMT3 Methyltransferases in RNA-directed DNA methylation [J].
Cao, XF ;
Aufsatz, W ;
Zilberman, D ;
Mette, MF ;
Huang, MS ;
Matzke, M ;
Jacobsen, SE .
CURRENT BIOLOGY, 2003, 13 (24) :2212-2217
[6]   Epigenetic regulation of the rice retrotransposon Tos17 [J].
Cheng, Chaoyang ;
Daigen, Masaaki ;
Hirochika, Hirohiko .
MOLECULAR GENETICS AND GENOMICS, 2006, 276 (04) :378-390
[7]   Imprinting mechanisms [J].
Constancia, M ;
Pickard, B ;
Kelsey, G ;
Reik, W .
GENOME RESEARCH, 1998, 8 (09) :881-900
[8]   Plant DNA viruses and gene silencing [J].
Covey, SN ;
Al-Kaff, NS .
PLANT MOLECULAR BIOLOGY, 2000, 43 (2-3) :307-322
[9]   Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites [J].
Czermin, B ;
Melfi, R ;
McCabe, D ;
Seitz, V ;
Imhof, A ;
Pirrotta, V .
CELL, 2002, 111 (02) :185-196
[10]   Histone H3-K9 methyltransferase ESET is essential for early development [J].
Dodge, JE ;
Kang, YK ;
Beppu, H ;
Lei, H ;
Li, E .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (06) :2478-2486