Gravitational optics:: Self-phase modulation and harmonic cascades -: art. no. 104009

被引:5
作者
Mendonça, JT
Cardoso, V
机构
[1] Univ Tecn Lisboa, GoLP, Inst Super Tecn, P-1049001 Lisbon, Portugal
[2] Univ Tecn Lisboa, Dept Fis, CENTRA, Inst Super Tecn, P-1049001 Lisbon, Portugal
来源
PHYSICAL REVIEW D | 2002年 / 66卷 / 10期
关键词
D O I
10.1103/PhysRevD.66.104009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A nonlinear wave interaction of low amplitude gravitational waves in flat space-time is considered. An analogy with optics is established. It is shown that the flat metric space-time is equivalent to a centrosymmetric optical medium, with no second order susceptibility. The lowest order nonlinear effects are those due to the third order nonlinearity and include self-phase modulation and high harmonic generation. These processes lead to an efficient energy dilution of the gravitational wave energy over an increasingly large spectral range.
引用
收藏
页数:5
相关论文
共 19 条
[1]  
BELINSKII VA, 1978, ZH EKSP TEOR FIZ, V48, P985
[2]  
BELINSKY VA, 1979, ZH EKSP TEOR FIZ+, V77, P3
[3]   PROPERTIES OF GRAVITATIONAL SOLITONS [J].
BOYD, PT ;
CENTRELLA, JM ;
KLASKY, SA .
PHYSICAL REVIEW D, 1991, 43 (02) :379-390
[4]  
Boyd R. W., 2003, NONLINEAR OPTICS
[5]   SOLITON-SOLUTIONS AND COSMOLOGICAL GRAVITATIONAL-WAVES [J].
CARR, BJ ;
VERDAGUER, E .
PHYSICAL REVIEW D, 1983, 28 (12) :2995-3006
[6]   A CLASS OF HOMOGENEOUS COSMOLOGICAL MODELS [J].
ELLIS, GFR ;
MACCALLUM, MA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 12 (02) :108-+
[7]   GRAVITATIONAL SOLITONS AND SPATIAL FLATNESS [J].
FEINSTEIN, A ;
CHARACH, C .
CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (01) :L5-L8
[8]   EFFECTIVE ENERGY OF GRAVITATIONAL SOLITONS [J].
FEINSTEIN, A .
PHYSICAL REVIEW D, 1987, 35 (10) :3263-3265
[9]   Gravitational wave astronomy: in anticipation of first sources to be detected [J].
Grishchuk, L. P. ;
Lipunov, V. M. ;
Postnov, K. A. ;
Prokhorov, M. E. ;
Sathyaprakash, B. S. .
PHYSICS-USPEKHI, 2001, 44 (01) :1-51
[10]   MULTISOLITON SOLUTIONS TO EINSTEIN EQUATIONS [J].
IBANEZ, J ;
VERDAGUER, E .
PHYSICAL REVIEW D, 1985, 31 (02) :251-257