The von Karman equations, the stress function, and elastic ridges in high dimensions

被引:16
作者
Kramer, EM [1 ]
机构
[1] UNIV CHICAGO, DEPT PHYS, CHICAGO, IL 60637 USA
关键词
D O I
10.1063/1.531893
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The elastic energy functional of a thin elastic rod or sheet is generalized to the case of an M-dimensional manifold in N-dimensional space. We derive potentials for the stress field and curvatures and find the generalized von Karman equations for a manifold in elastic equilibrium. We perform a scaling analysis of an M - 1-dimensional ridge in an M = N - 1-dimensional manifold. A ridge of linear size X in a manifold with thickness h much less than X has a width w similar to h(1/3)X(2/3) and a total energy E similar to mu h(M)(X/h)(M-5/3), where mu is a stretching modulus. We also prove that the total bending energy of the ridge is exactly five times the total stretching energy. These results match those of A. Lobkovsky [Phys. Rev. E 53, 3750 (1996)] for the case of a bent plate in three dimensions. (C) 1997 American Institute of Physics.
引用
收藏
页码:830 / 846
页数:17
相关论文
共 26 条
[1]  
ABROMWOTIZ M, 1972, HDB MATH FUNCTIONS
[2]  
Airy G. B., 1862, Phil. Trans. R. Soc. A, V153, P49
[3]  
DIKMEN M, 1982, THEORY THIN ELASTIC, P156
[4]  
EISENHART LP, 1909, DIFFERENTIAL GEOMETR
[5]   THERMODYNAMICAL BEHAVIOR OF POLYMERIZED MEMBRANES [J].
GUITTER, E ;
DAVID, F ;
LEIBLER, S ;
PELITI, L .
JOURNAL DE PHYSIQUE, 1989, 50 (14) :1787-1819
[6]  
Kleinert H., 1989, GAUGE FIELDS CONDENS
[7]  
KOITER WT, 1960, THEORY THIN ELASTIC
[8]   Universal power law in the noise from a crumpled elastic sheet [J].
Kramer, EM ;
Lobkovsky, AE .
PHYSICAL REVIEW E, 1996, 53 (02) :1465-1469
[9]  
KRAMER EM, UNPUB PHYS REV LETT
[10]  
KRAMER EM, IN PRESS PHYS REV E