Increased pancreatic β-cell proliferation mediated by CREB binding protein gene activation

被引:79
作者
Hussain, Mehboob A.
Porras, Delia L.
Rowe, Matthew H.
West, Jason R.
Song, Woo-Jin
Schreiber, Weston E.
Wondisford, Fredric E.
机构
[1] Johns Hopkins Univ, Div Metab, Dept Pediat, Baltimore, MD 21287 USA
[2] Johns Hopkins Univ, Div Metab, Dept Med, Baltimore, MD 21287 USA
[3] Univ Chicago Hosp, Dept Med, Endocrinol Sect, Chicago, IL 60637 USA
关键词
D O I
10.1128/MCB.02353-05
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cyclic AMP (cAMP) signaling pathway is central in beta-cell gene expression and function. In the nucleus, protein kinase A (PKA) phosphorylates CREB, resulting in recruitment of the transcriptional coactivators p300 and CREB binding protein (CBP). CBP, but not p300, is phosphorylated at serine 436 in response to insulin action. CBP phosphorylation disrupts CRIEB-CBP interaction and thus reduces nuclear cAMP action. To elucidate the importance of the cAMP-PKA-CREB-CBP pathway in pancreatic beta cells specifically at the nuclear level, we have examined mutant mice lacking the insulin-dependent phosphorylation site of CBP. In these mice, the CREB-CBP interaction is enhanced in both the absence and presence of cAMP stimulation. We found that islet and beta-cell masses were increased twofold, while pancreas weights were not different from the weights of wild-type littermates. beta-Cell proliferation was increased both in vivo and in vitro in isolated islet cultures. Surprisingly, glucose-stimulated insulin secretion from perfused, isolated mutant islets was reduced. However, beta-cell depolarization with KCl induced similar levels of insulin release from mutant and wild-type islets, indicating normal insulin synthesis and storage. In addition, transcripts of pgc1a, which disrupts glucose-stimulated insulin secretion, were also markedly elevated. In conclusion, sustained activation of CBP-responsive genes results in increased beta-cell proliferation. In these beta cells, however, glucose-stimulated insulin secretion was diminished, resulting from concomitant CREB-CBP-mediated pgc1a gene activation.
引用
收藏
页码:7747 / 7759
页数:13
相关论文
共 47 条
[1]   Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells [J].
Abraham, EJ ;
Leech, CA ;
Lin, JC ;
Zulewski, H ;
Habener, JF .
ENDOCRINOLOGY, 2002, 143 (08) :3152-3161
[2]   β-cell turnover -: Its assessment and implications [J].
Bonner-Weir, S .
DIABETES, 2001, 50 :S20-S24
[3]   Islet growth and development in the adult [J].
Bonner-Weir, S .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2000, 24 (03) :297-302
[4]  
Bromley M, 1996, EUR J HISTOCHEM, V40, P89
[5]   Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system [J].
Brubaker, PL ;
Drucker, DJ .
ENDOCRINOLOGY, 2004, 145 (06) :2653-2659
[6]   Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation [J].
Dor, Y ;
Brown, J ;
Martinez, OI ;
Melton, DA .
NATURE, 2004, 429 (6987) :41-46
[7]   Glucagon-like peptide-1 and the islet β-cell:: Augmentation of cell proliferation and inhibition of apoptosis [J].
Drucker, DJ .
ENDOCRINOLOGY, 2003, 144 (12) :5145-5148
[8]   Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia:: their stabilization and redox signal-induced interaction with CBP/p300 [J].
Ema, M ;
Hirota, K ;
Mimura, J ;
Abe, H ;
Yodoi, J ;
Sogawa, K ;
Poellinger, L ;
Fujii-Kuriyama, Y .
EMBO JOURNAL, 1999, 18 (07) :1905-1914
[9]   Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets [J].
Fernandes, A ;
King, LC ;
Guz, Y ;
Stein, R ;
Wright, CVE ;
Teitelman, G .
ENDOCRINOLOGY, 1997, 138 (04) :1750-1762
[10]   Evidence for a circulating islet cell growth factor in insulin-resistant states [J].
Flier, SN ;
Kulkarni, RN ;
Kahn, CR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (13) :7475-7480