Non-linear regression models for Approximate Bayesian Computation

被引:318
作者
Blum, Michael G. B. [1 ]
Francois, Olivier [2 ]
机构
[1] Fac Med Grenoble, TIMC IMAG, CNRS, F-38706 La Tronche, France
[2] Fac Med Grenoble, TIMC IMAG, Inst Natl Polytech Grenoble, F-38706 La Tronche, France
关键词
Likelihood-free inference; Curse of dimensionality; Feed forward neural networks; Heteroscedasticity; Coalescent models; Approximate Bayesian computation; Conditional density estimation; Implicit statistical models; Importance sampling; Non-linear regression; Indirect inference; HUMAN-POPULATION EXPANSION; MONTE-CARLO METHODS; MAXIMUM-LIKELIHOOD; INFERENCE; STATISTICS; SUPPORT;
D O I
10.1007/s11222-009-9116-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Approximate Bayesian inference on the basis of summary statistics is well-suited to complex problems for which the likelihood is either mathematically or computationally intractable. However the methods that use rejection suffer from the curse of dimensionality when the number of summary statistics is increased. Here we propose a machine-learning approach to the estimation of the posterior density by introducing two innovations. The new method fits a nonlinear conditional heteroscedastic regression of the parameter on the summary statistics, and then adaptively improves estimation using importance sampling. The new algorithm is compared to the state-of-the-art approximate Bayesian methods, and achieves considerable reduction of the computational burden in two examples of inference in statistical genetics and in a queueing model.
引用
收藏
页码:63 / 73
页数:11
相关论文
共 51 条
[1]  
[Anonymous], 2008, ARXIV08113355
[2]  
[Anonymous], 2003, Bayesian Data Analysis
[3]  
[Anonymous], 2004, Springer Texts in Statistics
[4]  
Beaumont MA, 2002, GENETICS, V162, P2025
[5]  
BEAUMONT MA, 2009, ARXIV08052256
[6]  
Beaumont MA., 2008, SIMULATIONS GENETICS, P135
[7]  
Bishop C., 2006, PATTERN RECOGN, DOI DOI 10.1117/1.2819119
[8]  
BLUM MGB, 2008, ARXIV08100896
[9]   Inference for stereological extremes [J].
Bortot, P. ;
Coles, S. G. ;
Sisson, S. A. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) :84-92
[10]   AN ANALYSIS OF TRANSFORMATIONS [J].
BOX, GEP ;
COX, DR .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) :211-252