Automated Gaussian spectral clustering of hyperspectral data

被引:13
作者
Beaven, SG [1 ]
Hazel, G
Stocker, AD
机构
[1] Space Comp Corp, San Diego, CA 92110 USA
[2] Naval Res Lab, Washington, DC USA
[3] Space Comp Corp, Los Angeles, CA 90025 USA
来源
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VIII | 2002年 / 4725卷
关键词
hyperspectral; spectral clustering; automated segmentation; target detection;
D O I
10.1117/12.478758
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unsupervised classification of multispectral and hyperspectral data is useful for a range of military and commercial remote sensing applications. These include terrain categorization, material detection and identification, and land use quantification. Here we show the development and application of an adaptive Gaussian Spectral Clustering approach to unsupervised classification and anomalous target detection in hyperspectral data. The method is built on adaptively estimating the parameters of a Gaussian mixture model from over local regions, and includes methods for adjusting to inevitable non-stationarity of hyperspectral image data. The algorithm is suitable for application to streaming hyperspectral data as would be required for real-time applications. In this paper we outline the model used, estimation techniques, and methods for adaptively estimating key model parameters required to characterize hyperspectral imagery. The key elements of the approach are demonstrated on reflective band hyperspectral data from NRL WarHORSE and NASA AVIRIS hyperspectral imagery. We also demonstrate broader utility with an example of segmentation of RADARSAT SAR imagery of sea ice.
引用
收藏
页码:254 / 266
页数:13
相关论文
共 13 条
  • [1] [Anonymous], 1993, JPL PUBL
  • [2] Beaven SG, 2000, INT GEOSCI REMOTE SE, P1597, DOI 10.1109/IGARSS.2000.857283
  • [3] Beaven SG, 2000, INT GEOSCI REMOTE SE, P1326, DOI 10.1109/IGARSS.2000.858108
  • [4] STRUCTURE AND HISTOCHEMISTRY OF MYCORRHIZAE SYNTHESIZED BETWEEN ARBUTUS-MENZIESII (ERICACEAE) AND 2 BASIDIOMYCETES, PISOLITHUS-TINCTORIUS (PISOLITHACEAE) AND PILODERMA-BICOLOR (CORTICIACEAE)
    MASSICOTTE, HB
    MELVILLE, LH
    MOLINA, R
    PETERSON, RL
    [J]. MYCORRHIZA, 1993, 3 (01) : 1 - 11
  • [5] MOON TK, 1996, IEEE SIGNAL PROC NOV, V13
  • [6] ADAPTIVE MULTIPLE-BAND CFAR DETECTION OF AN OPTICAL-PATTERN WITH UNKNOWN SPECTRAL DISTRIBUTION
    REED, IS
    YU, XL
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (10): : 1760 - 1770
  • [7] Schowengerdt R.A., 1997, REMOTE SENSING MODEL
  • [8] SIMPSON JJ, 2000, IEEE T GEOSCIENCE RE, V38
  • [9] STEIN DWJ, 2001, SPIE P, V4047
  • [10] STEIN DWJ, 2002, SIGNAL PROCESSIN JAN, V19