Electron transport in semiconductor superlattices

被引:7
作者
Ben Abdallah, N
Degond, P
Mellet, A
Poupaud, F
机构
[1] Univ Toulouse 3, CNRS, UMR 5640, F-31062 Toulouse, France
[2] Ecole Normale Super Lyon, F-69364 Lyon 07, France
关键词
Boltzmann equation; diffusion equation; spherical harmonics expansion; semiconductor superlattices; diffusion approximation; homogenization; interface operators; semigroup;
D O I
10.1090/qam/1955228
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we rigorously derive a diffusion model for semiconductor superlattices, starting from a kinetic description of electron transport at the microscopic scale. Electron transport in the superlattice is modelled by a collisionless Boltzmann equation subject to a periodic array of localized scatters modeling the periodic heterogeneities of the material. The limit of a large number of periodicity cells combined with a large-time asymptotics leads to a homogenized diffusion equation which belongs to the class of so-called "SHE" models (for Spherical Harmonics Expansion). The rigorous convergence proof relies on fine estimates on the operator modeling the localized scatters.
引用
收藏
页码:161 / 192
页数:32
相关论文
共 34 条
[1]  
ALEXANDRE R, HOMOGENIZATION KINET
[2]  
Allaire G, 1999, RAIRO-MATH MODEL NUM, V33, P721
[3]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[4]  
[Anonymous], 1998, BOLTZMANN EQUATION I
[5]  
Babovsky H., 1991, Asymptotic Analysis, V3, P265
[6]   DIFFUSION-APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE [J].
BARDOS, C ;
SANTOS, R ;
SENTIS, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) :617-649
[7]  
BARDOS C, 1989, COMMUN PUR APPL MATH, V42, P891
[8]  
Bardos C, 1970, ANN SCI ECOLE NORM S, V4, P185, DOI 10.24033/asens.1190
[9]   On a hierarchy of macroscopic models for semiconductors [J].
BenAbdallah, N ;
Degond, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (07) :3306-3333
[10]  
Bensoussan A., 1979, Publications of the Research Institute for Mathematical Sciences, V15, P53, DOI DOI 10.2977/PRIMS/1195188427