A statistical framework for expression-based molecular classification in cancer

被引:88
作者
Parmigiani, G [1 ]
Garrett, ES [1 ]
Anbazhagan, R [1 ]
Gabrielson, E [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Div Oncol & Baltimore, Baltimore, MD 21205 USA
关键词
microarray data analysis; mixture distributions; molecular classification of cancer;
D O I
10.1111/1467-9868.00358
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Genome-wide measurement of gene expression is a promising approach to the identification of subclasses of cancer that are currently not differentiable, but potentially biologically heterogeneous. This type of molecular classification gives hope for highly individualized and more effective prognosis and treatment of cancer. Statistically, the analysis of gene expression data from unclassified tumours is a complex hypothesis-generating activity, involving data exploration, modelling and expert elicitation. We propose a modelling framework that can be used to inform and organize the development of exploratory tools for classification. Our framework uses latent categories to provide both a statistical definition of differential expression and a precise, experiment-independent, definition of a molecular profile. It also generates natural similarity measures for traditional clustering and gives probabilistic statements about the assignment of tumours to molecular profiles.
引用
收藏
页码:717 / 736
页数:20
相关论文
共 36 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]  
[Anonymous], GENOME BIOL
[3]  
[Anonymous], BAYES EMPIRICAL BAYE
[4]   Clustering gene expression patterns [J].
Ben-Dor, A ;
Shamir, R ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) :281-297
[5]  
BERGER J. O., 2013, Statistical Decision Theory and Bayesian Analysis, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2]
[6]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[7]   DRAGON: Database Referencing of Array Genes Online [J].
Bouton, CMLS ;
Pevsner, J .
BIOINFORMATICS, 2000, 16 (11) :1038-1039
[8]  
COLANTUONI C, 2003, IN PRESS ANAL GENE E
[9]  
DIEBOLT J, 1994, J ROY STAT SOC B MET, V56, P363
[10]   Empirical Bayes analysis of a microarray experiment [J].
Efron, B ;
Tibshirani, R ;
Storey, JD ;
Tusher, V .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1151-1160