Anomalous refractive properties of photonic crystals

被引:343
作者
Gralak, B [1 ]
Enoch, S [1 ]
Tayeb, G [1 ]
机构
[1] Ctr St Jerome, Fac Sci & Tech, Lab Opt Electromagnet, ESA 6079, F-13397 Marseille 20, France
来源
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION | 2000年 / 17卷 / 06期
关键词
D O I
10.1364/JOSAA.17.001012
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe methods of investigating the behavior of photonic crystals. Our approach establishes a link between the dispersion relation of the Bloch modes for an infinite crystal (which describes the intrinsic properties of the photonic crystal in the absence of an incident field) and the diffraction problem of a grating (finite photonic crystal) illuminated by an incident field. We point out the relationship between the translation operator of the first problem and the transfer matrix of the second. The eigenvalues of the transfer matrix contain information about the dispersion relation. This approach enables us to answer questions such as When does ultrarefraction occur? Can the photonic crystal simulate a homogeneous and isotropic material with low effective index? This approach also enables us to determine suitable parameters to obtain ultrarefractive or negative refraction properties and to design optical devices such as highly dispersive microprisms and ultrarefractive microlenses. Rigorous computations add a quantitative aspect and demonstrate the relevance of our approach. (C) 2000 Optical Society of America [S0740-3232(00)00306-9].
引用
收藏
页码:1012 / 1020
页数:9
相关论文
共 33 条
[1]   ANOMALOUS INDEX OF REFRACTION IN PHOTONIC BANDGAP MATERIALS [J].
DOWLING, JP ;
BOWDEN, CM .
JOURNAL OF MODERN OPTICS, 1994, 41 (02) :345-351
[2]   Coupled-mode calculation with the R-matrix propagator for the dispersion of surface waves on a truncated photonic crystal [J].
Elson, JM ;
Tran, P .
PHYSICAL REVIEW B, 1996, 54 (03) :1711-1715
[3]   Numerical evidence of ultrarefractive optics in photonic crystals [J].
Enoch, S ;
Tayeb, G ;
Maystre, D .
OPTICS COMMUNICATIONS, 1999, 161 (4-6) :171-176
[4]   Homogenization of a set of parallel fibres [J].
Felbacq, D ;
Bouchitte, G .
WAVES IN RANDOM MEDIA, 1997, 7 (02) :245-256
[5]   SCATTERING BY A RANDOM SET OF PARALLEL CYLINDERS [J].
FELBACQ, D ;
TAYEB, G ;
MAYSTRE, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (09) :2526-2538
[6]   Mean-field theory of two-dimensional metallic photonic crystals [J].
Guide, G ;
Maystre, D ;
Tayeb, G ;
Vincent, P .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1998, 15 (08) :2308-2315
[7]   ANALYSIS OF MULTILAYERED PERIODIC STRUCTURES USING GENERALIZED SCATTERING MATRIX-THEORY [J].
HALL, RC ;
MITTRA, R ;
MITZNER, KM .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1988, 36 (04) :511-518
[8]   EXISTENCE OF A PHOTONIC GAP IN PERIODIC DIELECTRIC STRUCTURES [J].
HO, KM ;
CHAN, CT ;
SOUKOULIS, CM .
PHYSICAL REVIEW LETTERS, 1990, 65 (25) :3152-3155
[9]  
Joannopoulos J. D., 1995, PHOTONIC CRYSTALS
[10]   Superprism phenomena in photonic crystals [J].
Kosaka, H ;
Kawashima, T ;
Tomita, A ;
Notomi, M ;
Tamamura, T ;
Sato, T ;
Kawakami, S .
PHYSICAL REVIEW B, 1998, 58 (16) :10096-10099