ras2 controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis

被引:84
作者
Lee, N
Kronstad, JW [1 ]
机构
[1] Univ British Columbia, Dept Microbiol & Immunol, Biotechnol Lab, Vancouver, BC V6T 1Z3, Canada
[2] Univ British Columbia, Fac Agr Sci, Vancouver, BC V6T 1Z3, Canada
关键词
D O I
10.1128/EC.1.6.954-966.2002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Ustilago maydis, a pathogen of maize, is a useful model for the analysis of mating, pathogenicity, and the morphological transition between budding and filamentous growth in fungi. As in other fungi, these processes are regulated by conserved signaling mechanisms, including the cyclic AMP (cAMP)/protein kinase A (PKA) pathway and at least one mitogen-activated protein kinase (MAP kinase) pathway. A current challenge is to identify additional factors that lie downstream of the cAMP pathway and that influence morphogenesis in U. maydis. In this study, we identified suppressor mutations that restored budding growth to a constitutively filamentous mutant with a defect in the gene encoding a catalytic subunit of PKA. Complementation of one suppressor mutation unexpectedly identified the ras2 gene, which is predicted to encode a member of the well-conserved ras family of small GTP-binding proteins. Deletion of the ras2 gene in haploid cells altered cell morphology, eliminated pathogenicity on maize seedlings, and revealed a role in the production of aerial hyphae during mating. We also used an activated ras2 allele to demonstrate that Ras2 promotes pseudohyphal growth via a MAP kinase cascade involving the MAP kinase kinase Fuz7 and the MAP kinase Ubc3. Overall, our results reveal an additional level of crosstalk between the cAMP signaling pathway and a MAP kinase pathway influenced by Ras2.
引用
收藏
页码:954 / 966
页数:13
相关论文
共 61 条
[1]   RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans [J].
Alspaugh, JA ;
Cavallo, LM ;
Perfect, JR ;
Heitman, J .
MOLECULAR MICROBIOLOGY, 2000, 36 (02) :352-365
[2]   The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth [J].
Andrews, DL ;
Egan, JD ;
Mayorga, ME ;
Gold, SE .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (07) :781-786
[3]  
Banuett F, 1996, DEVELOPMENT, V122, P2965
[4]   IDENTIFICATION OF FUZ7, A USTILAGO-MAYDIS MEK/MAPKK HOMOLOG REQUIRED FOR A-LOCUS-DEPENDENT AND A-LOCUS-INDEPENDENT STEPS IN THE FUNGAL LIFE-CYCLE [J].
BANUETT, F ;
HERSKOWITZ, I .
GENES & DEVELOPMENT, 1994, 8 (12) :1367-1378
[5]   IDENTIFICATION AND COMPLEMENTATION OF A MUTATION TO CONSTITUTIVE FILAMENTOUS GROWTH IN USTILAGO-MAYDIS [J].
BARRETT, KJ ;
GOLD, SE ;
KRONSTAD, JW .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1993, 6 (03) :274-283
[6]   THE A MATING TYPE LOCUS OF U-MAYDIS SPECIFIES CELL SIGNALING COMPONENTS [J].
BOLKER, M ;
URBAN, M ;
KAHMANN, R .
CELL, 1992, 68 (03) :441-450
[7]  
Broach J R, 1990, Adv Cancer Res, V54, P79, DOI 10.1016/S0065-230X(08)60809-X
[8]   RAS GENES IN SACCHAROMYCES-CEREVISIAE - SIGNAL TRANSDUCTION IN SEARCH OF A PATHWAY [J].
BROACH, JR .
TRENDS IN GENETICS, 1991, 7 (01) :28-33
[9]   CAMP-INDEPENDENT CONTROL OF SPORULATION, GLYCOGEN-METABOLISM, AND HEAT-SHOCK RESISTANCE IN S-CEREVISIAE [J].
CAMERON, S ;
LEVIN, L ;
ZOLLER, M ;
WIGLER, M .
CELL, 1988, 53 (04) :555-566
[10]   CHARACTERIZATION OF SACCHAROMYCES-CEREVISIAE GENES ENCODING SUBUNITS OF CYCLIC AMP-DEPENDENT PROTEIN-KINASE [J].
CANNON, JF ;
TATCHELL, K .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2653-2663