Automated Network Analysis Identifies Core Pathways in Glioblastoma

被引:261
作者
Cerami, Ethan [1 ,2 ]
Demir, Emek [1 ]
Schultz, Nikolaus [1 ]
Taylor, Barry S. [1 ]
Sander, Chris [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Computat Biol Ctr, New York, NY 10021 USA
[2] Tri Inst Training Program Computat Biol & Med, New York, NY USA
来源
PLOS ONE | 2010年 / 5卷 / 02期
关键词
INTEGRATED ANALYSIS; FUNCTIONAL MODULES; PROTEIN INTERACTIONS; PIKE-A; AMPLIFICATION; ORGANIZATION; TOPOLOGY; PATTERNS; REVEALS; GLIOMAS;
D O I
10.1371/journal.pone.0008918
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor in humans and the first cancer with comprehensive genomic profiles mapped by The Cancer Genome Atlas (TCGA) project. A central challenge in large-scale genome projects, such as the TCGA GBM project, is the ability to distinguish cancer-causing "driver'' mutations from passively selected "passenger'' mutations. Principal Findings: In contrast to a purely frequency based approach to identifying driver mutations in cancer, we propose an automated network-based approach for identifying candidate oncogenic processes and driver genes. The approach is based on the hypothesis that cellular networks contain functional modules, and that tumors target specific modules critical to their growth. Key elements in the approach include combined analysis of sequence mutations and DNA copy number alterations; use of a unified molecular interaction network consisting of both protein-protein interactions and signaling pathways; and identification and statistical assessment of network modules, i.e. cohesive groups of genes of interest with a higher density of interactions within groups than between groups. Conclusions: We confirm and extend the observation that GBM alterations tend to occur within specific functional modules, in spite of considerable patient-to-patient variation, and that two of the largest modules involve signaling via p53, Rb, PI3K and receptor protein kinases. We also identify new candidate drivers in GBM, including AGAP2/CENTG1, a putative oncogene and an activator of the PI3K pathway; and, three additional significantly altered modules, including one involved in microtubule organization. To facilitate the application of our network-based approach to additional cancer types, we make the method freely available as part of a software tool called NetBox.
引用
收藏
页数:10
相关论文
共 59 条
[1]   PIKE-A is amplified in human cancers and prevents apoptosis by up-regulating Akt [J].
Ahn, JY ;
Hu, YX ;
Kroll, TG ;
Allard, P ;
Ye, KQ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (18) :6993-6998
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Can bibliographic pointers for known biological data be found automatically? Protein interactions as a case study [J].
Blaschke, C ;
Valencia, A .
COMPARATIVE AND FUNCTIONAL GENOMICS, 2001, 2 (04) :196-206
[4]   KIT overexpression induces proliferation in astrocytes in an imatinib-responsive manner and associates with proliferation index in gliomas [J].
Blom, Tea ;
Fox, Heli ;
Angers-Loustau, Alexandre ;
Peltonen, Karita ;
Kerosu, Laura ;
Wartiovaara, Kirmo ;
Linja, Marika ;
Jaenne, Olli A. ;
Kovanen, Panu ;
Haapasalo, Hannu ;
Nupponen, Nina N. .
INTERNATIONAL JOURNAL OF CANCER, 2008, 123 (04) :793-800
[5]   Detecting functional modules in the yeast protein-protein interaction network [J].
Chen, Jingchun ;
Yuan, Bo .
BIOINFORMATICS, 2006, 22 (18) :2283-2290
[6]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[7]  
Costello JF, 1997, CANCER RES, V57, P1250
[8]   Protein interactions - Two methods for assessment of the reliability of high throughput observations [J].
Deane, CM ;
Salwinski, L ;
Xenarios, I ;
Eisenberg, D .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (05) :349-356
[9]  
Demir E., 2009, PaxTools: a library for accessing and manipulating BioPAX
[10]   DAVID: Database for annotation, visualization, and integrated discovery [J].
Dennis, G ;
Sherman, BT ;
Hosack, DA ;
Yang, J ;
Gao, W ;
Lane, HC ;
Lempicki, RA .
GENOME BIOLOGY, 2003, 4 (09)