The Petrov-Galerkin method for second kind integral equations .2. Multiwavelet schemes

被引:58
作者
Chen, ZY
Micchelli, CA
Xu, YS
机构
[1] ZHONGSHAN UNIV,DEPT COMPUTAT SCI,GUANGZHOU 510275,PEOPLES R CHINA
[2] IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598
[3] N DAKOTA STATE UNIV,DEPT MATH,FARGO,ND 58105
关键词
D O I
10.1023/A:1018994802659
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper continues the theme of the recent work [3] and further develops the Petrov-Galerkin method for Fredholm integral equations of the second kind. Specifically, we study wavelet Petrov-Galerkin schemes based on discontinuous orthogonal multiwavelets and prove that the condition number of the coefficient matrix for the linear system obtained from the wavelet Petrov-Galerkin scheme is bounded. In addition, we propose a truncation strategy which forms a basis for fast wavelet algorithms and analyze the order of convergence and computational complexity of these algorithms.
引用
收藏
页码:199 / 233
页数:35
相关论文
共 13 条
[1]  
ATKINSON K. E., 1976, A survey of numerical methods for the solution of Fredholm integral equations of the second kind
[2]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[3]  
CHEN Z, IN PRESS SIAM J NUME
[4]   WAVELET APPROXIMATION METHODS FOR PSEUDODIFFERENTIAL-EQUATIONS .1. STABILITY AND CONVERGENCE [J].
DAHMEN, W ;
PROSSDORF, S ;
SCHNEIDER, R .
MATHEMATISCHE ZEITSCHRIFT, 1994, 215 (04) :583-620
[5]  
Dahmen W., 1993, Adv. Comput. Math., V1, P259
[6]  
Karlin S., 1968, Total Positivity
[7]  
Kress R., 1989, LINEAR INTEGRAL EQUA, V74, P804
[8]  
Micchelli C. A., 1994, Applied and Computational Harmonic Analysis, V1, P391, DOI 10.1006/acha.1994.1024
[9]  
MICCHELLI CA, IN PRESS J MULTIDIME
[10]  
Micchelli CA., 1993, NUMER ALGORITHMS, V5, P375, DOI DOI 10.1007/BF02109419