Densest lattice packings of 3-polytopes

被引:57
作者
Betke, U [1 ]
Henk, M
机构
[1] Univ Siegen, Dept Math, D-57068 Siegen, Germany
[2] Univ Magdeburg, Dept Math IMO, D-39106 Magdeburg, Germany
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2000年 / 16卷 / 03期
关键词
lattices; packings; polytopes;
D O I
10.1016/S0925-7721(00)00007-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on Minkowski's work on critical lattices of 3-dimensional convex bodies we present an efficient algorithm for computing the density of a densest lattice packing of an arbitrary 3-polytope. As an application we calculate densest lattice packings of all regular and Archimedean polytopes. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:157 / 186
页数:30
相关论文
共 34 条
[1]  
AGARWAL PK, 1997, HDB DISCRETE COMPUTA, P575
[2]  
[Anonymous], 1998, USING ALGEBRAIC GEOM, DOI DOI 10.1007/978-1-4757-6911-1
[3]  
[Anonymous], 1971, LONDON MATH SOC LECT
[4]  
[Anonymous], P LONDON MATH SOC
[5]  
[Anonymous], 1999, SPHERE PACKINGS
[6]   SUR LINDICE DE CERTAINS RESEAUX DE R4 PERMIS POUR UN OCTAEDRE [J].
BANTEGNIE, R .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (05) :725-+
[7]  
BANTEGNIE R, 1967, ACTA ARITH, V14, P185
[8]  
BRUNNGRABER E, 1944, THESIS U WIEN
[9]   ON THE FRUSTRUM OF A SPHERE [J].
CHALK, JHH .
ANNALS OF MATHEMATICS, 1950, 52 (01) :199-216
[10]   AN OPTIMAL CONVEX-HULL ALGORITHM IN ANY FIXED DIMENSION [J].
CHAZELLE, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 10 (04) :377-409