Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension

被引:35
作者
Lubeck, S
Usadel, KD
机构
[1] Theoretische Tieftemperaturphysik, Gerhard-Mercator Universität Duisburg, Duisburg, 47048
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 05期
关键词
D O I
10.1103/PhysRevE.56.5138
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the Bak-Tang-Wiesenfeld sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] on square lattices in different dimensions (D less than or equal to 6). A finite-size scaling analysis of the avalanche probability distributions yields the values of the distribution exponents, the dynamical exponent. and the dimension of the avalanches. Above the upper critical dimension D-u=4 the exponents equal the known mean-field values. An analysis of the area probability distributions indicates that the avalanches are fractal above the critical dimension.
引用
收藏
页码:5138 / 5143
页数:6
相关论文
共 23 条
  • [1] SELF-ORGANIZED CRITICALITY
    BAK, P
    TANG, C
    WIESENFELD, K
    [J]. PHYSICAL REVIEW A, 1988, 38 (01): : 364 - 374
  • [2] SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE
    BAK, P
    TANG, C
    WIESENFELD, K
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (04) : 381 - 384
  • [3] Universality in sandpile models
    BenHur, A
    Biham, O
    [J]. PHYSICAL REVIEW E, 1996, 53 (02) : R1317 - R1320
  • [4] SANDPILE MODELS WITH AND WITHOUT AN UNDERLYING SPATIAL STRUCTURE
    CHRISTENSEN, K
    OLAMI, Z
    [J]. PHYSICAL REVIEW E, 1993, 48 (05) : 3361 - 3372
  • [5] Forest fires and other examples of self-organized criticality
    Clar, S
    Drossel, B
    Schwabl, F
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (37) : 6803 - 6824
  • [6] ABELIAN SANDPILE MODEL ON THE BETHE LATTICE
    DHAR, D
    MAJUMDAR, SN
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (19): : 4333 - 4350
  • [7] SELF-ORGANIZED CRITICAL STATE OF SANDPILE AUTOMATON MODELS
    DHAR, D
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (14) : 1613 - 1616
  • [8] DYNAMIC RENORMALIZATION-GROUP APPROACH TO SELF-ORGANIZED CRITICAL PHENOMENA
    DIAZGUILERA, A
    [J]. EUROPHYSICS LETTERS, 1994, 26 (03): : 177 - 182
  • [9] SOME MORE SANDPILES
    GRASSBERGER, P
    MANNA, SS
    [J]. JOURNAL DE PHYSIQUE, 1990, 51 (11): : 1077 - 1098
  • [10] IVASHKEVICH EV, 1994, J PHYS A, V76, P3643