Destruction of the securin Pds1p occurs at the onset of anaphase during both meiotic divisions in yeast

被引:86
作者
Salah, SM
Nasmyth, K
机构
[1] Inst Mol Pathol, A-1030 Vienna, Austria
[2] Vienna Bioctr, Inst Biochem & Mol Biol, A-1030 Vienna, Austria
关键词
D O I
10.1007/s004120050409
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sister chromatid cohesion is established during DNA replication and depends on a multiprotein complex called cohesin. At the onset of anaphase the cohesive structures that hold sisters together must be destroyed to allow segregation of sisters. In the budding yeast Saccharomyces cerevisiae loss of sister chromatid cohesion depends on a separating protein (separin) called Esp1. At the metaphase to anaphase transition, separin is activated by proteolysis of its inhibitory subunit (securin) called Pds1. This process is mediated by the anaphase promoting complex and an accessory protein Cdc20. In meiosis a single round of DNA replication is followed by two successive rounds of segregation. Thus loss of cohesion is spun out over two divisions. By studying the mechanisms that initiate anaphase in meiotic division we show that the yeast securin Pds1p is present in meiotic nuclei and is destroyed at the onset of each meiotic division. We also show that securin destruction depends on Cdc20p which accumulates within nuclei around the time of Pds Ip's disappearance.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 22 条
[1]   Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage [J].
Alexandru, G ;
Zachariae, W ;
Schleiffer, A ;
Nasmyth, K .
EMBO JOURNAL, 1999, 18 (10) :2707-2721
[2]   An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast [J].
Ciosk, R ;
Zachariae, W ;
Michaelis, C ;
Shevchenko, A ;
Mann, M ;
Nasmyth, K .
CELL, 1998, 93 (06) :1067-1076
[3]   Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p [J].
CohenFix, O ;
Peters, JM ;
Kirschner, MW ;
Koshland, D .
GENES & DEVELOPMENT, 1996, 10 (24) :3081-3093
[4]   REGION-SPECIFIC ACTIVATORS OF MEIOTIC RECOMBINATION IN SCHIZOSACCHAROMYCES-POMBE [J].
DEVEAUX, LC ;
SMITH, GR .
GENES & DEVELOPMENT, 1994, 8 (02) :203-210
[5]   The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation [J].
Fang, GW ;
Yu, HT ;
Kirschner, MW .
GENES & DEVELOPMENT, 1998, 12 (12) :1871-1883
[6]   A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S-cerevisiae [J].
Guacci, V ;
Koshland, D ;
Strunnikov, A .
CELL, 1997, 91 (01) :47-57
[7]   A central role for cohesions in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis [J].
Klein, F ;
Mahr, P ;
Galova, M ;
Buonomo, SBC ;
Michaelis, C ;
Nairz, K ;
Nasmyth, K .
CELL, 1999, 98 (01) :91-103
[8]   Identification of Xenopus SMC protein complexes required for sister chromatid cohesion [J].
Losada, A ;
Hirano, M ;
Hirano, T .
GENES & DEVELOPMENT, 1998, 12 (13) :1986-1997
[9]   Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids [J].
Michaelis, C ;
Ciosk, R ;
Nasmyth, K .
CELL, 1997, 91 (01) :35-45
[10]  
MIYAZAKI WY, 1994, ANNU REV GENET, V28, P167, DOI 10.1146/annurev.ge.28.120194.001123