Oligomeric state and stoichiometry of p24 proteins in the early secretory pathway

被引:105
作者
Jenne, N [1 ]
Frey, K [1 ]
Brügger, B [1 ]
Wieland, FT [1 ]
机构
[1] Univ Heidelberg, Zentrum Biochem, D-69120 Heidelberg, Germany
关键词
D O I
10.1074/jbc.M206989200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The p24 proteins belong to a highly conserved family of membrane proteins that cycle in the early secretory pathway. They bind to the coat proteins of COPI and COPII vesicles, and are proposed to be involved in vesicle biogenesis, cargo uptake, and quality control, but their precise function is still under debate. Most p24 proteins form hetero-oligomers, essential for their correct localization and stability. Functional insights regarding the mechanisms of their steady state localization and the role of interaction with coat proteins has been hampered by a lack of data on their concentration and state of oligomerization within the endoplasmic reticulum, the intermediate compartment, and Golgi complex. We have determined for all mammalian p24 family members the size of the oligomers formed and their stoichiometric relation in each of these individual organelles. In contrast to earlier reports, we show that individual members exist as dimers and monomers and that the ratio between these two forms depends on both the organelle investigated and the p24 protein. We find unequal quantities, with p23 and p27 building up concentration gradients, ruling out a simple 1:1 stoichiometry. In addition, we show differential cycling of individual p24 members. These data point to a complex and dynamic system of altering dimerizations of the family members.
引用
收藏
页码:46504 / 46511
页数:8
相关论文
共 39 条
[1]   Golgi matrix proteins interact with p24 cargo receptors and aid their efficient retention in the Golgi apparatus [J].
Barr, FA ;
Preisinger, C ;
Kopajtich, R ;
Körner, R .
JOURNAL OF CELL BIOLOGY, 2001, 155 (06) :885-891
[2]   Distinct roles for the cytoplasmic tail sequences of Emp24p and Erv25p in transport between the endoplasmic reticulum and Golgi complex [J].
Belden, WJ ;
Barlowe, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (46) :43040-43048
[3]   Erv25p, a component of COPII-coated vesicles, forms a complex with Emp24p that is required for efficient endoplasmic reticulum to Golgi transport [J].
Belden, WJ ;
Barlowe, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (43) :26939-26946
[4]  
Blum R, 1999, J CELL SCI, V112, P537
[5]   Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors [J].
Bremser, M ;
Nickel, W ;
Schweikert, M ;
Ravazzola, M ;
Amherdt, M ;
Hughes, CA ;
Söllner, TH ;
Rothman, JE ;
Wieland, FT .
CELL, 1999, 96 (04) :495-506
[6]  
BREW K, 1975, J BIOL CHEM, V250, P1434
[7]   Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles [J].
Brügger, B ;
Sandhoff, R ;
Wegehingel, S ;
Gorgas, K ;
Malsam, J ;
Helms, JB ;
Lehmann, WD ;
Nickel, W ;
Wieland, FT .
JOURNAL OF CELL BIOLOGY, 2000, 151 (03) :507-517
[8]   The p24 family member p23 is required for early embryonic development [J].
Denzel, A ;
Otto, F ;
Girod, A ;
Pepperkok, R ;
Watson, R ;
Rosewell, I ;
Bergeron, JJM ;
Solari, RCE ;
Owen, MJ .
CURRENT BIOLOGY, 2000, 10 (01) :55-58
[9]   gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer [J].
Dominguez, M ;
Dejgaard, K ;
Füllekrug, J ;
Dahan, S ;
Fazel, A ;
Paccaud, JP ;
Thomas, DY ;
Bergeron, JJM ;
Nilsson, T .
JOURNAL OF CELL BIOLOGY, 1998, 140 (04) :751-765
[10]   Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations [J].
ElrodErickson, MJ ;
Kaiser, CA .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (07) :1043-1058