Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens

被引:256
作者
Cooley, MB
Pathirana, S
Wu, HJ
Kachroo, P
Klessig, DF [1 ]
机构
[1] Rutgers State Univ, Waksman Inst, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Mol Biol & Biochem, Piscataway, NJ 08854 USA
关键词
D O I
10.1105/tpc.12.5.663
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Turnip crinkle virus (TCV) inoculation onto TCV-resistant Arabidopsis leads to a hypersensitive response (HR) controlled by the dominant gene HRT. HRT is a member of the class of resistance (R) genes that contain a leucine zipper, a nucleotide binding site, and leucine-rich repeats. The chromosomal position of HRT and its homology to resistance gene RPP8 and two RPP8 homologs indicate that unequal crossing over and gene conversion may have contributed to HRT evolution. RPP8 confers resistance to an oomycete pathogen, Peronospora parasitica. Despite very strong similarities within the HRT/RPP8 family, HRT and RPP8 are specific for the respective pathogens they detect. Hence, the HRT/RPP8 family provides molecular evidence that sequence changes between closely related members of multigene families can generate novel specificities for radically different pathogens. Transgenic plants expressing HRT developed an HR but generally remained susceptible to TCV because of a second gene, RRT, that regulates resistance to TCV. However, several transgenic plants that overexpressed HRT produced micro-HRs or no HR when inoculated with TCV and were resistant to infection. Expression of the TCV coat protein gene in seedlings containing HRT resulted in massive necrosis and death, indicating that the avirulence factor detected by the HRT-encoded protein is the TCV coat protein.
引用
收藏
页码:663 / 676
页数:14
相关论文
共 63 条
[1]   Molecular analysis of irradiation induced and spontaneous deletion mutants at a disease resistance locus in Lactuca sativa [J].
Anderson, PA ;
Okubara, PA ;
ArroyoGarcia, R ;
Meyers, BC ;
Michelmore, RW .
MOLECULAR & GENERAL GENETICS, 1996, 251 (03) :316-325
[2]   Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region [J].
Anderson, PA ;
Lawrence, GJ ;
Morrish, BC ;
Ayliffe, MA ;
Finnegan, EJ ;
Ellis, JG .
PLANT CELL, 1997, 9 (04) :641-651
[3]  
Ausubel F. M., 1999, SHORT PROTOCOLS MOL
[4]   Signaling in plant-microbe interactions [J].
Baker, B ;
Zambryski, P ;
Staskawicz, B ;
DineshKumar, SP .
SCIENCE, 1997, 276 (5313) :726-733
[5]  
Bechtold N, 1998, METH MOL B, V82, P259
[6]   The Rx gene from potato controls separate virus resistance and cell death responses [J].
Bendahmane, A ;
Kanyuka, K ;
Baulcombe, DC .
PLANT CELL, 1999, 11 (05) :781-791
[7]  
Bent AF, 1996, PLANT CELL, V8, P1757, DOI 10.1105/tpc.8.10.1757
[8]   BINARY AGROBACTERIUM VECTORS FOR PLANT TRANSFORMATION [J].
BEVAN, M .
NUCLEIC ACIDS RESEARCH, 1984, 12 (22) :8711-8721
[9]   Three genes of the arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants [J].
Botella, MA ;
Parker, JE ;
Frost, LN ;
Bittner-Eddy, PD ;
Beynon, JL ;
Daniels, MJ ;
Holub, EB ;
Jones, JDG .
PLANT CELL, 1998, 10 (11) :1847-1860
[10]   Developmental control of Xa21-mediated disease resistance in rice [J].
Century, KS ;
Lagman, RA ;
Adkisson, M ;
Morlan, J ;
Tobias, R ;
Schwartz, K ;
Smith, A ;
Love, J ;
Ronald, PC ;
Whalen, MC .
PLANT JOURNAL, 1999, 20 (02) :231-236