Role of TRAF3 and -6 in the activation of the NF-κB and JNK pathways by X-linked ectodermal dysplasia receptor

被引:71
作者
Sinha, SK
Zachariah, S
Quiñones, HI
Shindo, M
Chaudhary, PM
机构
[1] Univ Texas, SW Med Ctr, Hamon Ctr Therapeut Oncol Res, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Div Hematol Oncol, Dallas, TX 75390 USA
关键词
D O I
10.1074/jbc.M207923200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
X-linked ectodermal dysplasia receptor (XEDAR) is a recently isolated member of the tumor necrosis factor receptor family that has been shown to be highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2). By using a subclone of 293F cells with stable expression of XEDAR, we report that XEDAR activates the NF-kappaB and JNK pathways in an EDA-A2-dependent fashion. Treatment with EDA-A2 leads to the recruitment of TRAF3 and -6 to the aggregated XEDAR complex, suggesting a central role of these adaptors in the proximal aspect of XEDAR signaling. Whereas TRAF3 and -6, IKK1/IKKalpha, IKK2/IKKbeta, and NEMO/IKKgamma are involved in XEDAR-induced NF-kappaB activation, XEDAR-induced JNK activation seems to be mediated via a pathway dependent on TRAF3, TRAF6, and ASK1. Deletion and point mutagenesis studies delineate two distinct regions in the cytoplasmic domain of XEDAR, which are involved in binding to TRAF3 and -6, respectively, and play a major role in the activation of the NF-kappaB and JNK pathways. Taken together, our results establish a major role of TRAF3 and -6 in XEDAR signaling and in the process of ectodermal differentiation.
引用
收藏
页码:44953 / 44961
页数:9
相关论文
共 43 条
[1]  
Baker SJ, 1996, ONCOGENE, V12, P1
[2]   The anhidrotic ectodermal dysplasia gene (EDA) undergoes alternative splicing and encodes ectodysplasin-A with deletion mutations in collagenous repeats [J].
Bayés, M ;
Hartung, AJ ;
Ezer, S ;
Pispa, J ;
Thesleff, I ;
Srivastava, AK ;
Kere, J .
HUMAN MOLECULAR GENETICS, 1998, 7 (11) :1661-1669
[3]   A conserved signaling pathway: The Drosophila Toll-Dorsal pathway [J].
Belvin, MP ;
Anderson, KV .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1996, 12 :393-416
[4]   Tumor necrosis factor receptor-associated factors (TRAFs) [J].
Bradley, JR ;
Pober, JS .
ONCOGENE, 2001, 20 (44) :6482-6491
[5]   TARF6 is a signal transducer for interleukin-1 [J].
Cao, ZD ;
Xiong, J ;
Takeuchi, M ;
Kurama, T ;
Goeddel, DV .
NATURE, 1996, 383 (6599) :443-446
[6]   The gene for X-linked anhidrotic ectodermal dysplasia encodes a TNF-like domain [J].
Copley, RR .
JOURNAL OF MOLECULAR MEDICINE-JMM, 1999, 77 (04) :361-363
[7]   A cytoplasmic inhibitor of the JNK signal transduction pathway [J].
Dickens, M ;
Rogers, JS ;
Cavanagh, J ;
Raitano, A ;
Xia, ZG ;
Halpern, JR ;
Greenberg, ME ;
Sawyers, CL ;
Davis, RJ .
SCIENCE, 1997, 277 (5326) :693-696
[8]   X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling [J].
Döffinger, R ;
Smahi, A ;
Bessia, C ;
Geissmann, F ;
Feinberg, J ;
Durandy, A ;
Bodemer, C ;
Kenwrick, S ;
Dupuis-Girod, S ;
Blanche, S ;
Wood, P ;
Rabia, SH ;
Headon, DJ ;
Overbeek, PA ;
Le Deist, F ;
Holland, SM ;
Belani, K ;
Kumararatne, DS ;
Fischer, A ;
Shapiro, R ;
Conley, ME ;
Reimund, E ;
Kalhoff, H ;
Abinun, M ;
Munnich, A ;
Israël, A ;
Courtois, G ;
Casanova, JL .
NATURE GENETICS, 2001, 27 (03) :277-285
[9]   TAJ, a novel member of the tumor necrosis factor receptor family, activates the c-Jun N-terminal kinase pathway and mediates caspase-independent cell death [J].
Eby, MT ;
Jasmin, A ;
Kumar, A ;
Sharma, K ;
Chaudhary, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (20) :15336-15342
[10]   Expression and function of TRAF-3 splice-variant isoforms in human lymphoma cell lines [J].
Gamper, C ;
Omene, CO ;
van Eyndhoven, WG ;
Glassman, GD ;
Lederman, S .
HUMAN IMMUNOLOGY, 2001, 62 (10) :1167-1177