Reaction kinetics of freeze-granulated NiO/MgAl2O4 oxygen carrier particles for chemical-looping combustion

被引:90
作者
Zafar, Qamar [1 ]
Abad, Alberto
Mattisson, Tobias
Gevert, Borje
机构
[1] Chalmers, Dept Biol & Chem Engn, S-41296 Gothenburg, Sweden
[2] CSIC, Inst Carboquim, Dept Energy & Environm, E-50018 Zaragoza, Spain
[3] Chalmers, Dept Energy & Environm, S-41296 Gothenburg, Sweden
关键词
D O I
10.1021/ef060450y
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The kinetics of reduction and oxidation of Ni based oxygen carrier particles with CH4 and O-2 have been investigated. The kinetic parameters were obtained from reactivity data using a thermogravimetric analyzer (TGA), where the freeze-granulated particles were tested using different reactant gas concentrations, temperatures, and particles sizes. The particles showed high reactivity during both reduction and oxidation at temperatures above 900 degrees C. The shrinking-core model for spherical grain geometry of the reacting particle with chemical reaction control was used to determine the kinetic parameters during both the reduction and oxidation reactions. The reaction order found was 0.4 and 1 for CH4 and O-2, respectively, while the activation energies found were 114 and 40 kJ/mol for reduction and oxidation reactions, respectively. The reactivity data and kinetic parameters were used to estimate the solid inventory needed in a chemical-looping combustion (CLC) system. The total solid inventory varies with the solid conversion at the inlet of the fuel and air reactor, and for the investigated particles, the minimum solid inventory was 22 kg/MWf. It was found that to operate fuel and air reactors of a CLC system at 950 and 1000 degrees C, respectively, using an NiO/MgAl2O4 oxygen carrier with a 50% active NiO content, the conversion variation between the two reactors should not exceed 0.18. The recirculation rate between the air and fuel reactors needed was 4.15 kg/(s MWf). The high reactivity of the NiO/MgAl2O4 both with methane and oxygen found in this work, together with the good fluidizing properties found in earlier studies, suggests that this is an excellent oxygen carrier for a CLC system.
引用
收藏
页码:610 / 618
页数:9
相关论文
共 24 条
[1]   Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion [J].
Abad, Alberto ;
Adanez, Juan ;
Garcia-Labiano, Francisco ;
de Diego, Luis F. ;
Gayan, Pilar ;
Celaya, Javier .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (1-2) :533-549
[2]   Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier:: Effect of operating conditions on methane combustion [J].
Adanez, Juan ;
Gayan, Pilar ;
Celaya, Javier ;
de Diego, Luis F. ;
Garcia-Labiano, Francisco ;
Abad, Alberto .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (17) :6075-6080
[3]  
[Anonymous], 7 INT C GREENH GAS C
[4]   Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
FUEL, 2004, 83 (09) :1215-1225
[5]   Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion [J].
García-Labiano, F ;
Adánez, J ;
de Diego, LF ;
Gayán, P ;
Abad, A .
ENERGY & FUELS, 2006, 20 (01) :26-33
[6]   Temperature variations in the oxygen carrier particles during, their reduction and oxidation in a chemical-looping combustion system [J].
García-Labiano, F ;
de Diego, LF ;
Adánez, J ;
Abad, A ;
Gayán, P .
CHEMICAL ENGINEERING SCIENCE, 2005, 60 (03) :851-862
[7]   Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion [J].
García-Labiano, F ;
de Diego, LF ;
Adánez, J ;
Abad, A ;
Gayán, P .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (26) :8168-8177
[8]   EVALUATION OF A CHEMICAL-LOOPING-COMBUSTION POWER-GENERATION SYSTEM BY GRAPHIC EXERGY ANALYSIS [J].
ISHIDA, M ;
ZHENG, D ;
AKEHATA, T .
ENERGY, 1987, 12 (02) :147-154
[9]   A fundamental study of a new kind of medium material for chemical-looping combustion [J].
Ishida, M ;
Jin, HG ;
Okamoto, T .
ENERGY & FUELS, 1996, 10 (04) :958-963
[10]   A novel chemical-looping combustor without NOx formation [J].
Ishida, M ;
Jin, HG .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1996, 35 (07) :2469-2472