Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolase

被引:92
作者
Yamada, T
Morisseau, C
Maxwell, JE
Argiriadi, MA
Christianson, DW
Hammock, BD
机构
[1] Univ Calif Davis, Dept Entomol, Davis, CA 95616 USA
[2] Univ Penn, Dept Chem, Roy & Diana Vagelos Labs, Philadelphia, PA 19104 USA
关键词
D O I
10.1074/jbc.M001464200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epoxide hydrolases (EH) catalyze the hydrolysis of epoxides and arene oxides to their corresponding diols. The crystal structure of murine soluble EH suggests that Tyr(465) and Tyr(381) act as acid catalysts, activating the epoxide ring and facilitating the formation of a covalent intermediate between the epoxide and the enzyme. To explore the role of these two residues, mutant enzymes were produced and the mechanism of action was analyzed. Enzyme assays on a series of substrates confirm that both Tyr(465) and Tyr(381) are required for full catalytic activity. The kinetics of chalcone oxide hydrolysis show that mutation of Tyr(465) and Tyr(381) decreases the rate of binding and the formation of an intermediate, suggesting that both tyrosines polarize the epoxide moiety to facilitate ring opening. These two tyrosines are, however, not implicated in the hydrolysis of the covalent intermediate. Sequence comparisons showed that Tyr(465) is conserved in microsomal EHs. The substitution of analogous Tyr(374) with phenylalanine in the human microsomal EH dramatically decreases the rate of hydrolysis of cis-stilbene oxide. These results suggest that these tyrosines perform a significant mechanistic role in the substrate activation by EHs.
引用
收藏
页码:23082 / 23088
页数:7
相关论文
共 44 条
[1]  
Allen F.H., 1993, CHEM AUTOMAT NEWS, V8, P31
[2]   Catalytic triad of microsomal epoxide hydrolase:: replacement of Glu404 with Asp leads to a strongly increased turnover rate [J].
Arand, M ;
Müller, F ;
Mecky, A ;
Hinz, W ;
Urban, P ;
Pompon, D ;
Kellner, R ;
Oesch, F .
BIOCHEMICAL JOURNAL, 1999, 337 :37-43
[3]   Cloning and molecular characterization of a soluble epoxide hydrolase from Aspergillus niger that is related to mammalian microsomal epoxide hydrolase [J].
Arand, M ;
Hemmer, H ;
Dürk, H ;
Baratti, J ;
Archelas, A ;
Furstoss, R ;
Oesch, F .
BIOCHEMICAL JOURNAL, 1999, 344 :273-280
[4]  
Arand M, 1996, J BIOL CHEM, V271, P4223
[5]   Binding of alkylurea inhibitors to epoxide hydrolase implicates active site tyrosines in substrate activation [J].
Argiriadi, MA ;
Morisseau, C ;
Goodrow, MH ;
Dowdy, DL ;
Hammock, BD ;
Christianson, DW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (20) :15265-15270
[6]   Detoxification of environmental mutagens and carcinogens: Structure, mechanism, and evolution of liver epoxide hydrolase [J].
Argiriadi, MA ;
Morisseau, C ;
Hammock, BD ;
Christianson, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (19) :10637-10642
[7]   GENE EVOLUTION OF EPOXIDE HYDROLASES AND RECOMMENDED NOMENCLATURE [J].
BEETHAM, JK ;
GRANT, D ;
ARAND, M ;
GARBARINO, J ;
KIYOSUE, T ;
PINOT, F ;
OESCH, F ;
BELKNAP, WR ;
SHINOZAKI, K ;
HAMMOCK, BD .
DNA AND CELL BIOLOGY, 1995, 14 (01) :61-71
[8]   CDNA CLONING AND EXPRESSION OF A SOLUBLE EPOXIDE HYDROLASE FROM HUMAN LIVER [J].
BEETHAM, JK ;
TIAN, TG ;
HAMMOCK, BD .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1993, 305 (01) :197-201
[9]  
BELL PA, 1993, J BIOL CHEM, V268, P14011
[10]   EFFECTS OF PARA-SUBSTITUENTS ON THE MECHANISMS OF SOLVOLYSIS OF STYRENE OXIDES [J].
BLUMENSTEIN, JJ ;
UKACHUKWU, VC ;
MOHAN, RS ;
WHALEN, DL .
JOURNAL OF ORGANIC CHEMISTRY, 1993, 58 (04) :924-932