Dynamical fidelity of a solid-state quantum computation

被引:14
作者
Berman, GP [1 ]
Borgonovi, F
Celardo, G
Izrailev, FM
Kamenev, DI
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA
[3] Univ Cattolica, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
[4] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy
[5] Ist Nazl Fis Nucl, Unita Brescia, Brescia, Italy
[6] INFM, Unita Milano, Milan, Italy
[7] Univ Autonoma Puebla, Inst Fis, Puebla 72570, Mexico
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 05期
关键词
D O I
10.1103/PhysRevE.66.056206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper we analyze the dynamics in a spin model of quantum computer. Main attention is paid to the dynamical fidelity (associated with dynamical errors) of an algorithm that allows to create an entangled state for remote qubits. We show that in the regime of selective resonant excitations of qubits there is no danger of quantum chaos. Moreover, in this regime a modified perturbation theory gives an adequate description of the dynamics of the system. Our approach allows us to explicitly describe all peculiarities of the evolution of the system under time-dependent pulses corresponding to a quantum protocol. Specifically, we analyze, both analytically and numerically, how the fidelity decreases in dependence on the model parameters.
引用
收藏
页数:9
相关论文
共 25 条
[1]  
BENENTI G, QUANTPH0112132
[2]  
Berman G.P., 1998, INTRO QUANTUM COMPUT
[3]   QUANTUM COMPUTER ON A CLASS OF ONE-DIMENSIONAL ISING SYSTEMS [J].
BERMAN, GP ;
DOOLEN, GD ;
HOLM, DD ;
TSIFRINOVICH, VI .
PHYSICS LETTERS A, 1994, 193 (5-6) :444-450
[4]   Error correction for a spin quantum computer [J].
Berman, GP ;
Campbell, DK ;
Tsifrinovich, VI .
PHYSICAL REVIEW B, 1997, 55 (09) :5929-5936
[5]   Delocalization border and onset of chaos in a model of quantum computation [J].
Berman, GP ;
Borgonovi, F ;
Izrailev, FM ;
Tsifrinovich, VI .
PHYSICAL REVIEW E, 2001, 64 (05) :14-056226
[6]   Perturbation theory for quantum computation with a large number of qubits [J].
Berman, GP ;
Doolen, GD ;
Kamenev, DI ;
Tsifrinovich, VI .
PHYSICAL REVIEW A, 2002, 65 (01) :4
[7]  
BERMAN GP, 2000, PHYS REV A, V61
[8]  
BERMAN GP, 2001, PHYS REV E, V65
[9]   Force-detected magnetic resonance in a field gradient of 250 000 Tesla per meter [J].
Bruland, KJ ;
Dougherty, WM ;
Garbini, JL ;
Sidles, JA ;
Chao, SH .
APPLIED PHYSICS LETTERS, 1998, 73 (21) :3159-3161
[10]   Sensitivity of wave field evolution and manifold stability in chaotic systems [J].
Cerruti, NR ;
Tomsovic, S .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4-541034